Biology (MindTap Course List)
Biology (MindTap Course List)
10th Edition
ISBN: 9781285423586
Author: Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 38, Problem 1TYU
Summary Introduction

Introduction: Plant hormones are chemical molecules produced by plants in extremely low concentration for regulating the growth and development. There are five major hormones involved in the growth process. They are auxin, gibberellin, ethylene, abscisic acid, and cytokinin. Each of these hormones has its own functions at specific locations. The presence of these hormones in a definite amount is very essential for the normal growth and development of the plant.

Expert Solution & Answer
Check Mark

Answer to Problem 1TYU

Correct answer: In the signal transduction process for the hormone auxin, the molecule ubiquitin tags certain proteins for destruction.

Hence, the correct answer is option (c).

Explanation of Solution

Reason for the correct answer:

General mechanism of action of auxin hormone:

Auxins are a group of related hormones responsible for a wide range of consequences on the growth and development of plants. Within a certain concentration, Auxin stimulates cell elongation in stems and coleoptiles. Auxin inhibits elongation growth by increasing the cell wall extensibility, according to the acid growth hypothesis. The main effects of auxin are to promote cell elongation according to the concentration.

Many plant hormones bind to the receptors which trigger the enzymatic reaction and results in the changes for cell growth and development of the plants. Both external and internal signal triggers the auxin hormone synthesis. The cytosol or the nucleus of the cell contains one receptor with three-dimensional shape (TIR1 receptor) that binds to auxin molecule. As the auxin binds to its receptor, ubiquitin molecule attaches to the repressor molecule and inhibits the auxin response genes. Thereafter, the ubiquitinylated protein is targeted and degraded into peptide fragments in a proteasome. This causes transcription of auxin response gene which acidifies the cell wall of target cells. The acidified target cell walls become more plastic which enables it to expand due to increased force of the cell’s turgor pressure. Thus, the action of auxin hormone causes cell expansion without cell division.

Option (c) is given as “tags certain proteins for destruction”.

The small regulatory protein called ubiquitin attaches to other proteins and are used to tag certain proteins for destruction. This process of tagging is referred to as ubiquitination and it is a post-translational modification. Ubiquitin-mediated proteolysis normally takes place during auxin signaling in plants.

Hence, the correct answer is option (c).

Reasons for the incorrect answers:

Option (a) is given as “absorbs blue light”.

Phototropins are the proteins that absorb blue light and they help to control the photosynthetic efficacy of plants, not auxins.

Hence, option (a) is incorrect.

Option (b) is given as “becomes phosphorylated”.

Phototropins are the blue-light receptors that control the photosynthetic efficacy of plants located at the shoot tips. These proteins become phosphorylated in response to blue light.

Hence, option (b) is incorrect.

Option (d) is given as “interacts antagonistically with gibberellins”.

Gibberellin is a growth-regulating hormone that enhances the elongation of stems and leaves and in the development of fruits. During auxin signaling in plants, the ubiquitin molecule does not antagonistically interact with gibberellins. Instead, ubiquitin-mediated proteolysis takes place in the signal transduction process in auxin.

Hence, option (d) is incorrect.

Option (e) is given as “binds to a receptor in the plant cell’s plasma membrane”.

During auxin signaling in plants, the ubiquitin molecule does not bind to a receptor in the plasma membrane of the plant cell. Instead, ubiquitin-mediated proteolysis takes place in the signal transduction process in auxin.

Hence, option (e) is incorrect.

Hence, options (a), (b), (d), and (e) are incorrect.

Conclusion

As the auxin binds to its receptor, ubiquitin molecule attaches to the repressor molecule in order to target it for destruction.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
7. Aerobic respiration of a protein that breaks down into 12 molecules of malic acid. Assume there is no other carbon source and no acetyl-CoA. NADH FADH2 OP ATP SLP ATP Total ATP Show your work using dimensional analysis here: 3
For each of the following problems calculate the following: (Week 6-3 Video with 6-1 and 6-2) Consult the total catabolic pathways on the last page as a reference for the following questions. A. How much NADH and FADH2 is produced and fed into the electron transport chain (If any)? B. How much ATP is made from oxidative phosphorylation (OP), if any? Feed the NADH and FADH2 into the electron transport chain: 3ATP/NADH, 2ATP/FADH2 C. How much ATP is made by substrate level phosphorylation (SLP)? D. How much total ATP is made? Add the SLP and OP together. 1. Aerobic respiration using 0.5 mole of glucose? NADH FADH2 OP ATP SLP ATP Total ATP Show your work using dimensional analysis here:
Aerobic respiration of one lipid molecule. The lipid is composed of one glycerol molecule connected to two fatty acid tails. One fatty acid is 12 carbons long and the other fatty acid is 18 carbons long in the figure below. Use the information below to determine how much ATP will be produced from the glycerol part of the lipid. Then, in part B, determine how much ATP is produced from the 2 fatty acids of the lipid. Finally put the NADH and ATP yields together from the glycerol and fatty acids (part A and B) to determine your total number of ATP produced per lipid. Assume no other carbon source is available. 18 carbons fatty acids 12 carbons glycerol . Glycerol is broken down to glyceraldehyde 3-phosphate, a glycolysis intermediate via the following pathway shown in the figure below. Notice this process costs one ATP but generates one FADH2. Continue generating ATP with glyceraldehyde-3-phosphate using the standard pathway and aerobic respiration. glycerol glycerol-3- phosphate…
Knowledge Booster
Background pattern image
Biology
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Text book image
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Text book image
Biology: The Dynamic Science (MindTap Course List)
Biology
ISBN:9781305389892
Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher:Cengage Learning
Text book image
Science Of Agriculture Biological Approach
Biology
ISBN:9780357229323
Author:Herren
Publisher:Cengage
Text book image
BIOLOGY:CONCEPTS+APPL.(LOOSELEAF)
Biology
ISBN:9781305967359
Author:STARR
Publisher:CENGAGE L
Text book image
Biology: The Unity and Diversity of Life (MindTap...
Biology
ISBN:9781337408332
Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa Starr
Publisher:Cengage Learning
How do Plants Handle Stress?; Author: Alex Dainis;https://www.youtube.com/watch?v=TYsnveEHqec;License: Standard Youtube License