Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337671729
Author: SERWAY
Publisher: Cengage
bartleby

Videos

Textbook Question
Book Icon
Chapter 38, Problem 13P

Review. In 1963, astronaut Gordon Cooper orbited the Earth 22 times. The press stated that for each orbit, he aged two-millionths of a second less than he would have had he remained on the Earth. (a) Assuming Cooper was 160 km above the Earth in a circular orbit, determine the difference in elapsed time between someone on the Earth and the orbiting astronaut for the 22 orbits. You may use the approximation

1 1 x = 1 + x 2

for small x. (b) Did the press report accurate information? Explain.

Blurred answer
Students have asked these similar questions
Kepler's third law states that for any object in a gravitational orbit,  P2∝a3P2∝a3  where PP  is the orbital period of the object and aa  is the average distance between the object and what it is orbiting. In our Solar System, the natural units are distances measured in astronomical units (A.U.) and orbital periods measured in years. This can be seen for the Earth-Sun system which has an orbital period P=1P=1  year and an average distance  a=1a=1  AU. Using these natural units in the Solar System, the proportionality becomes an equality, so for our Solar System:  (Pyears)2=(aA.U.)3(Pyears)2=(aA.U.)3 . Using your mathematical prowess, determine what the orbital period in years would be for an asteroid that was discovered orbiting the Sun with an average distance of 25 astronomical units.
Kepler's third law states that the relationship between the mean distance d (in astronomical units) of a planet from the Sun and the time t (in years) it takes the planet to orbit the Sun can be given by d^3 = t^2. (A). It takes Venus 0.616 years to orbit the Sun. Find the mean distance of Venus from the Sun (in astronomical units). (B). The mean distance of Jupiter from the Sun is 5.24 astronomical units. How many years does it take Jupiter to orbit the Sun?
A Ferris wheel has a radius of 10 m, and the bottom of the wheel passes 1 m above the ground. If the Ferris wheel makes one complete revolution every 18 s, find an equation that gives the height above the ground of a person on the Ferris wheel as a function of time. (Let y be the height above the ground in meters and let t be the time in seconds. Assume that when t = 0 the person is 11 m above the ground and going up.) y = 10 m -1 m

Chapter 38 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY