Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337671729
Author: SERWAY
Publisher: Cengage
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 38, Problem 54CP

(a)

To determine

To show: The acceleration of the particle in the x direction is a=dudt=qEm(1u2c2)3/2

(a)

Expert Solution
Check Mark

Answer to Problem 54CP

The acceleration of the particle in the x direction is a=dudt=qEm(1u2c2)3/2 .

Explanation of Solution

The formula to calculate the relative momentum is,

p=mu1(u/c)2

Here,

m is the mass of the electric charge.

c is the speed of the light.

u is the speed of the electric charge.

The formula to calculate the force on the electric charge is,

F=qE

Here,

q is the charge of the electric charge.

E is the magnitude of the electric field.

The formula to calculate the Force due to motion is,

F=dpdt

The force on the electric charge due to motion must be equal to that of the force due to electric field.

Substitute qE for F in above equation to find dpdt .

qE=dpdt

Substitute mu1(u/c)2 for p in above equation.

qE=ddt(mu1(u/c)2)qE=ddt[mu(1u2c2)12]qE=m(1u2c2)12dudt+12mu(1u2c2)32(2uc2)dudtqEm=dudt[1(1(u/c)2)32]

Further solve the above equation.

dudt=qEm(1u2c2)3/2 (1)

The formula to calculate the acceleration is,

a=dudt

Substitute a for dudt in equation (1).

a=dudt=qEm(1u2c2)3/2

Conclusion

Therefore, the acceleration of the particle in the x direction is a=dudt=qEm(1u2c2)3/2 .

(b)

To determine

The significance of the dependence of the acceleration on the speed.

(b)

Expert Solution
Check Mark

Answer to Problem 54CP

The significance of the dependence of the acceleration on the speed is that when the speed of the charge is very small as compared to that of the speed of light the relative expression is transformed to the classical expression.

Explanation of Solution

The formula to calculate the acceleration of the charge is,

a=dudt=qEm(1u2c2)3/2

As the speed of charge approaches to the speed of light, the acceleration approaches to zero.

When the speed of the charge is very small as compared to that of the speed of the light the above equation can be transformed.

a=dudt=qEm

So the relative expression is transformed to the classical expression when the speed of the charge is very small as compared to that of the speed of the light.

Conclusion

Therefore, the significance of the dependence of the acceleration on the speed is that when the speed of the charge is very small as compared to that of the speed of light the relative expression is transformed to the classical expression.

(c)

To determine

The speed and the position of the charge particle at time t .

(c)

Expert Solution
Check Mark

Answer to Problem 54CP

The speed of the charge particle at time t is qEctm2c2+q2E2t2 and the position of the charge particle at time t is cqE(m2c2+q2E2t2mc) .

Explanation of Solution

The formula to calculate the acceleration of the charge is,

dudt=qEm(1u2c2)3/2

Integrate the above equation from velocity 0 to v and time 0 to t to find the total velocity.

0udu(1u2c2)3/2=0tqEmdtu(1u2c2)1/2=qEtmu2=(qEtm)2(1u2c2)u=qEctm2c2+q2E2t2

Thus the speed of the particle at time t is qEctm2c2+q2E2t2 .

The formula to calculate the position of the particle is,

dxdt=u

Substitute qEctm2c2+q2E2t2 for u in above equation to find the value of x .

dxdt=qEctm2c2+q2E2t2

Integrate the above equation from position 0 to x and time 0 to t to find the final position.

0xdx=0tqEctm2c2+q2E2t2dtx=cqE[m2c2+q2E2t2]0t=cqE(m2c2+q2E2t2mc)

Conclusion

Therefore, the speed of the charge particle at time t is qEctm2c2+q2E2t2 and the position of the charge particle at time t is cqE(m2c2+q2E2t2mc) .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
20:19 Vol 69% + WiFi2 nothing happens to the nqara lever more the container (d) none of these 33. Statement I: The internal energy of a solid substance increases during melting.4_03-04-2025_QP.pdf Statement II: The molecules have greater kinetic energy in a liquid. Statement I and Statement II are true and the (a) Statement II is the correct explanation of Statement I. Statement I and Statement II are true but the (b) Statement II is not the correct explanation of Statement I. (c) Statement I is true but Statement II is false. (d) Statement I and Statement II are false. 34. Select correct statement related to heat 35. (a) Heat is possessed by a body (b) (c) Hot water contains more heat as compared to cold water Heat is the energy which flows due to temperature difference (d) All of these Two liquids A and B are at 32°C and 24°C. When mixed in equal masses the temperature of the mixture is found to be 28°C. Their specific heats are in the ratio of: (a) 3:2 (c) 1:1 (b) 2:3 (d) 4:3 36.…
The skid loader shown has a mass of 1.28 Mg and in the position shown the center of mass is at G. There is a 255 kg barrel in the bucket with its center of mass at GB. The horizontal distance between the barrel's center of mass and the front wheels is d = 1.33 m. The horizontal distance between the front wheels and rear wheels is w = 0.55 m. The bucket arm is held horizontal between D and E and the pair of hydraulic cylinders creates angle /EDC of 0 = 32 degrees. 1.25 m GB D 60000 A G B E C 0.15 m 0.5 m d W i. Determine the reaction force on the pair of wheels at the front of the skid loader at A. ii. Determine the reaction force on the pair of wheels at the rear of the skid loader at B. iii. Determine the magnitude of the compressive force in a single hydraulic cylinder CD. Note that there are two hydraulic cylinders, one on each side of the skid loader. iv. Determine the magnitude of the reaction force on a single pin that attaches the bucket assembly to the skid loader chassis at E.…
The truss structure below is subjected to three forces as shown. P₁ = 7.5 kN P2 = 10.5 kN P3 = 6.5 kN h = 3.5 m w= 2.7 m A W B F E P3 P1 W C P2 W Ꭰ h i. Identify any Zero Force Members. ii. Calculate the support reaction forces at A and D. iii. Calculate the magnitude of the force in members EF, CF, BC, DE, and CD and state if these members are in tension or compression.

Chapter 38 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY