Concept explainers
Complete the blank cells in the following table of properties of refrigerant-134a. In the last column, describe the condition of refrigerant-134a as compressed liquid, saturated mixture, superheated vapor, or insufficient information, and, if applicable, give the quality.

The following table for refrigerant-134a which are blank.
P, kPa | u, kJ/kg | x, quality | Phase description | ||
320 | -12 | ||||
1000 | 39.37 | ||||
40 | 1.17794 | ||||
180 | 0.0700 | ||||
200 | 249 |
Explanation of Solution
State 1
Refer to Table A-12, obtain the value of saturated temperature at a pressure of 320 kPa as
The given temperature in state 1 is less than the saturated temperature at a pressure of 320 kPa.
Hence, state 1 is compressed liquid.
As wee see now there is no data for compressed liquid water in table A-7 for pressure 320 kPa, so calculate the specific internal energy and specific volume of a mixture at a saturated refrigerant-134a at a temperature of
State 2
Refer to Table A-4, obtain the specific volume at saturated liquid and specific internal energy at saturated liquid at a temperature of
Thus, the state 2 condition is saturated liquid.
State 3
Refer to Table A-13, “Superheater refrigerant-134a”, obtain the pressure and specific internal energy at a temperature and specific volume of
The given specific internal energy is greater than the specific internal energy at saturated vapour at a pressure of 140 kPa refer from Table A-12.
Thus, state 3 is a superheated steam.
State 4
Refer to Table A-12, obtain the specific volume and specific internal energy at saturated liquid
As we see now the given specific volume of the mixture
Hence, the state 4 is known as saturated mixture.
Refer to Table A-12, obtain the temperature at a pressure of 180 kPa as
Calculate the quality at state 1.
Substitute
Calculate the specific internal state.
Here, specific internal energy at saturated liquid and saturated vapour is
Substitute
State 5
Since
Thus, the state 5 is superheated steam.
Convert the unit of pressure from kPa to MPa.
Refer to Table A-13, obtain the temperature and specific volume at a pressure of 0.20 MPa and specific intenal energy of 249 kJ/kg as
From the above calculations and referred from the steam table, complete the table of
P, kPa | u, kJ/kg | x, quality | Phase description | ||
320 | -12 | --- | compressed liquid | ||
1000 | 39.37 | -- | saturated liquid | ||
40 | 1.17794 | - | superheated steam | ||
180 | 0.0700 | saturated mixture | |||
200 | 249 | -- | superheated steam |
Want to see more full solutions like this?
Chapter 3 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
- practise questionarrow_forwardCan you provide steps and an explaination on how the height value to calculate the Pressure at point B is (-5-3.5) and the solution is 86.4kPa.arrow_forwardPROBLEM 3.46 The solid cylindrical rod BC of length L = 600 mm is attached to the rigid lever AB of length a = 380 mm and to the support at C. When a 500 N force P is applied at A, design specifications require that the displacement of A not exceed 25 mm when a 500 N force P is applied at A For the material indicated determine the required diameter of the rod. Aluminium: Tall = 65 MPa, G = 27 GPa. Aarrow_forward
- Find the equivalent mass of the rocker arm assembly with respect to the x coordinate. k₁ mi m2 k₁arrow_forward2. Figure below shows a U-tube manometer open at both ends and containing a column of liquid mercury of length l and specific weight y. Considering a small displacement x of the manometer meniscus from its equilibrium position (or datum), determine the equivalent spring constant associated with the restoring force. Datum Area, Aarrow_forward1. The consequences of a head-on collision of two automobiles can be studied by considering the impact of the automobile on a barrier, as shown in figure below. Construct a mathematical model (i.e., draw the diagram) by considering the masses of the automobile body, engine, transmission, and suspension and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine mounts.arrow_forward
- 3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward500 Q3: The attachment shown in Fig.3 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). Fig. 3 All dimension in mm 30 kN 100 (10 Marks)arrow_forward
- (read image) (answer given)arrow_forwardA cylinder and a disk are used as pulleys, as shown in the figure. Using the data given in the figure, if a body of mass m = 3 kg is released from rest after falling a height h 1.5 m, find: a) The velocity of the body. b) The angular velocity of the disk. c) The number of revolutions the cylinder has made. T₁ F Rd = 0.2 m md = 2 kg T T₂1 Rc = 0.4 m mc = 5 kg ☐ m = 3 kgarrow_forward(read image) (answer given)arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





