Concept explainers
Figure P38.10 on the next page shows a monochromatic beam of light of wavelength 575 nm incident on a slab of crown glass surrounded by air. Use a protractor to measure the angles of incidence and refraction. a. What is the speed of the beam of light within the glass slab? b. What is the frequency of the beam of light within the glass slab? c. What is the wavelength of the beam of light within the glass slab?
FIGURE P38.10
(a)
The speed of the beam of light within the glass slab.
Answer to Problem 10PQ
The speed of the beam of light within the glass slab is
Explanation of Solution
Write the expression given by Snell’s for the light ray travelling in two different medium.
Here,
Write the expression to calculate the speed of light.
Here,
Conclusion:
By the use of protractor the angle of incidence is measured as
Substitute
Substitute
Therefore, the speed of the beam of light within the glass slab is
(b)
The frequency of the beam of light within the glass slab.
Answer to Problem 10PQ
The frequency of the beam of light within the glass slab is
Explanation of Solution
Write the expression to calculate the frequency.
Here,
Write the expression to calculate the wavelength of the light travelling in the glass medium.
Here,
Conclusion:
Substitute
Substitute
Therefore, the frequency of the beam of light within the glass slab is
(c)
The wavelength of the beam of light within the glass slab.
Answer to Problem 10PQ
The wavelength of the beam of light within the glass slab is
Explanation of Solution
Conclusion:
Substitute
Therefore, The wavelength of the beam of light within the glass slab is
Want to see more full solutions like this?
Chapter 38 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning