Concept explainers
Ionization measurements show that a particular lightweight nuclear particle carries a double charge (= 2e) and is moving with a speed of 0.710c. Its measured radius of curvature in a magnetic field of 1.00 T is 6.28 m. Find the mass of the particle and identify it. (Hints: Lightweight nuclear particles are made up of neutrons (which have no charge) and protons (charge = +e), in roughly equal numbers. Take the mass of each such particle to be 1.00 u. (See Problem 53.)
Want to see the full answer?
Check out a sample textbook solutionChapter 37 Solutions
Fundamentals Of Physics 11th Edition Loose-leaf Print Companion Volume 2 With Wileyplus Card Set
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Concepts of Genetics (12th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Biology (11th Edition)
Campbell Essential Biology with Physiology (5th Edition)
- The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.40 m. (a) What is the kinetic energy of the protons when they are ejected from the cyclotron? (b) What Is this energy in MeV? (c) Through what potential difference would a proton have to be accelerated to acquire this kinetic energy? (d) What is the period of tire voltage source used to accelerate the piotons? (e) Repeat tire calculations for alpha-particles.arrow_forwardAs measured by observers in a reference frame S, a particle having charge q moves with velocity v in a magnetic field B and an electric field E. The resulting force on the particle is then measured to be F = q(E + v × B). Another observer moves along with the charged particle and measures its charge to be q also but measures the electric field to be E′. If both observers are to measure the same force, F, show that E′ = E + v × B.arrow_forwardDescribe the following physical occurrences as events, that is, in the form (x, y, z, t): (a) A postman rings a doorbell of a house precisely at noon. (b) At the same lime as the doorbell is lung, a slice of bread pops out of a toaster that is located 10 1T1 from the door in the east direction from the door. (c) Tell seconds later, an airplane arrives at the airport, which is 10 km from the door in the east direction and 2 km to the south.arrow_forward
- Consider a charge of size +3.8 x 10-4 C and mass 8 kg is traveling to the left towards a +1.7 x 10-4 C charge with speed 119 m/s. The +1.7 x 10-4 C charge is so massive that it does not recoil in response to the repulsion of the approaching charge. Calculate how close the two charges get, in m. Use k = 9 x 109 N m2 / kg2. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forwardTwo infinitely-long conductors parallel to the z-axis pass through the points (0,±a).arrow_forwardQ. 3. Accelerated charge particles emit electromagnetic radiations. A particle having charge q and acceleration a radiates energy at a rate given by dE q²a²/6n€,c³ dt Where c is speed of light. (a) f a proton with kinetic energy 9.6x1013 J is accelerated in a circular orbit of radius 0.75 m, what fraction of its energy does it radiate per second? (b) If an electron is accelerated in the same orbit with the same speed, what fraction of its energy does it radiate per second?arrow_forward
- At the Relativistic Heavy Ion Collider (RHIC) facility on Long Island, NY, they accelerate gold nuclei (79 protons with a total mass of 3x10-25 kg) with a very strong magnetic field (the proton has a charge of 1.6x10-19 C). If the magnetic field were 2 Tesla, what would be the cyclotron radius of the circular loop that the nuclei circle around in, assuming they go at about the speed of light, 3x108 m/s? (note, in real life, the RHIC collider is considerably larger than this because of relativistic effects!) a. 1.5 m b. 2.5 m c. 3.5 m d. 4.5 marrow_forwardWhat is the period of revolution of alpha particles in a cyclotron with a radius of 0.50 meters, if it is known that the mass of particles is m = 6.64*10−27kg, and their charge is q = 3.2*10−19C? Consider the magnetic field created in the cyclotron equal to 1.8 T. Also calculate the value of their maximum kinetic energy.arrow_forwardPlease Solve Correctly.arrow_forward
- Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge that dE has charge g and acceleration is given by te where y'u' c is the speed of light. di: dt Part A If a proton with a kinetic energy of 5.6 MeV is traveling in a particle accelerator in a circular orbit with a radius of 0.580 m, what fraction of its energy does it radiate per second? (dE/dt) 1 E Part B IV | ΑΣΦ (dE/dl)-1s + [VΕΙ ΑΣΦΑ Consider an electron orbiting with the same speed and radius. What fraction of its energy does it radiate per second? po A ? ?arrow_forward(a) An positron (electron with a positive charge) starts at rest and accelerates through an electric field established by a set of parallel plates with a potential difference of 35 V. What is the speed of the positron the instant before it hits the negative plate?(e = 1.6 × 10-19 C, melectron = 9.1 × 10-31 kg) (b) Instead of hitting the negative plate, the positron, travelling East, escapes the parallel plates through a small hole and enters a magnetic field of 0.75 T directed downward. What will be the magnetic force (magnitude and direction) on the charge?(c) Once the positron has entered the magnetic field, it is in circular motion. What is the radius of the positron's circular path?arrow_forwardThe deflection of a particle beam depends on the charge to mass ratio: (D ~ q / m). An electron beam, with q/m = –1.76 × 1011 C kg–1, deflects to –10 cm. What is the deflection of a proton, p+? Question 3 options: > +10 cm < +1 cm < –1 cm Question 4 (1 point) Which particle has the greatest deflection in the same electric and magnetic fields? Question 4 options: q/2 and 2m 2q and m q and marrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax