EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
1st Edition
ISBN: 9780100546714
Author: Katz
Publisher: YUZU
Question
Book Icon
Chapter 37, Problem 63PQ

(a)

To determine

The angle at which the two tangent rays diverge from the tip of the nose when distance between the gum ball and the friend’s nose is 5cm.

(a)

Expert Solution
Check Mark

Answer to Problem 63PQ

The angle at which the two tangent rays diverge from the tip of the nose is 23°, when distance between the gum ball and the friend’s nose is 5cm.

Explanation of Solution

Write the expression for the angle at which two tangent rays diverge.

    tanθ=yD

Here, y is the diameter of the gum ball and D is the distance between the center of the gumball and the tip of your friend’s nose.

For very small angle θ.

    tanθθ

Substitute, θ for tanθ in the above equation.

    θ=yD                                                                                                                    (I)

Conclusion:

Substitute, 2cm for y and 5cm for D in equation (I) to find θ.

    θ=2cm5cm=0.4rad=(0.4rad)(180°πrad)=23°

Therefore, the angle at which the two tangent rays diverge from the tip of the nose is 23°, when distance between the gum ball and the friend’s nose is 5cm.

(b)

To determine

The angle at which the two tangent rays diverge from the tip of the nose when distance between the gum ball and the friend’s nose is 20cm.

(b)

Expert Solution
Check Mark

Answer to Problem 63PQ

The angle at which the two tangent rays diverge from the tip of the nose is 5.7°, when distance between the gum ball and the friend’s nose is 20cm.

Explanation of Solution

Rewrite equation (I).

  θ=yD                                                                                                                    (I)

Conclusion:

Substitute, 2cm for y and 20cm for D in equation (I) to find θ.

    θ=tan1(2cm20cm)=(0.1rad)(180°πrad)=5.7°

Therefore, the angle at which the two tangent rays diverge from the tip of the nose is 5.7°, when distance between the gum ball and the friend’s nose is 20cm.

(c)

To determine

The angle at which the two tangent rays diverge from the tip of the nose when distance between the gum ball and the friend’s nose is 100cm.

(c)

Expert Solution
Check Mark

Answer to Problem 63PQ

The angle at which the two tangent rays diverge from the tip of the nose is 1.1°, when distance between the gum ball and the friend’s nose is 100cm.

Explanation of Solution

Rewrite equation (I).

  θ=yD                                                                                                                    (I)

Conclusion:

Substitute, 2cm for y and 100cm for D in equation (I) to find θ.

    θ=2cm100cm=0.4rad=0.02rad×(180°πrad)=1.1°

Therefore, the angle at which the two tangent rays diverge from the tip of the nose is 1.1°, when distance between the gum ball and the friend’s nose is 100cm.

(d)

To determine

The angle at which the two tangent rays diverge from the tip of the nose when distance between the gum ball and the friend’s nose is 100km.

(d)

Expert Solution
Check Mark

Answer to Problem 63PQ

The angle at which the two tangent rays diverge from the tip of the nose is (1.1×105)°, when distance between the gum ball and the friend’s nose is 100km.

Explanation of Solution

Rewrite equation (I).

  θ=yD                                                                                                                    (I)

Conclusion:

Substitute, 2cm for y and 100km for D in equation (I) to find θ.

    θ=(2cm)(1m100cm)(100km)(1000m1km)=(2×107rad)(180°πrad)=(1.1×105)°

Therefore, the angle at which the two tangent rays diverge from the tip of the nose is (1.1×105)°, when distance between the gum ball and the friend’s nose is 100km.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…

Chapter 37 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 37 - Prob. 4PQCh. 37 - Prob. 5PQCh. 37 - Prob. 6PQCh. 37 - Prob. 7PQCh. 37 - Prob. 8PQCh. 37 - Prob. 9PQCh. 37 - Prob. 10PQCh. 37 - Prob. 11PQCh. 37 - Prob. 12PQCh. 37 - Prob. 13PQCh. 37 - Prob. 14PQCh. 37 - Light rays strike a plane mirror at an angle of...Ch. 37 - Prob. 16PQCh. 37 - Prob. 17PQCh. 37 - Prob. 18PQCh. 37 - Prob. 19PQCh. 37 - Prob. 20PQCh. 37 - Prob. 21PQCh. 37 - Prob. 22PQCh. 37 - Prob. 23PQCh. 37 - Prob. 24PQCh. 37 - Prob. 25PQCh. 37 - Prob. 26PQCh. 37 - Prob. 27PQCh. 37 - Prob. 28PQCh. 37 - A convex mirror with a radius of curvature of 25.0...Ch. 37 - The magnitude of the radius of curvature of a...Ch. 37 - Prob. 31PQCh. 37 - The image formed by a convex spherical mirror with...Ch. 37 - An object is placed 25.0 cm from the surface of a...Ch. 37 - Prob. 34PQCh. 37 - Prob. 35PQCh. 37 - Prob. 36PQCh. 37 - Prob. 37PQCh. 37 - Prob. 38PQCh. 37 - Prob. 39PQCh. 37 - Prob. 40PQCh. 37 - Prob. 41PQCh. 37 - Prob. 42PQCh. 37 - Prob. 43PQCh. 37 - Prob. 44PQCh. 37 - Prob. 45PQCh. 37 - Prob. 46PQCh. 37 - Prob. 47PQCh. 37 - Prob. 48PQCh. 37 - Prob. 49PQCh. 37 - Prob. 50PQCh. 37 - Prob. 51PQCh. 37 - Prob. 52PQCh. 37 - Prob. 53PQCh. 37 - Prob. 54PQCh. 37 - Prob. 55PQCh. 37 - Prob. 56PQCh. 37 - You see the image of a sign through a camera...Ch. 37 - Prob. 58PQCh. 37 - Prob. 59PQCh. 37 - Prob. 60PQCh. 37 - An object is placed midway between two concave...Ch. 37 - Prob. 62PQCh. 37 - Prob. 63PQCh. 37 - Prob. 64PQCh. 37 - Prob. 65PQCh. 37 - Prob. 66PQCh. 37 - Observe your reflection in the back of a spoon....Ch. 37 - Prob. 68PQCh. 37 - A small convex mirror and a large concave mirror...Ch. 37 - Prob. 70PQCh. 37 - Prob. 71PQCh. 37 - Prob. 72PQCh. 37 - Prob. 73PQ
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning