Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 47AP
(a)
To determine
The location of the first side maximum.
(b)
To determine
The location of the second side maximum.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two interfering light waves have intensities of 20,W,m−2 and 40,W,m−2 , and the phase difference between them at some point P is π/3 . The intensity at P, in W m−2 , including interference is:(give your answer as a decimal to 1.d.p.)
Problem 5: Consider light that has its third minimum at an angle of 24.4° when it falls on a single slit of width 3.55 µm .
Randomized Variables
e = 24.4 °
w = 3.55 µm
Find the wavelength of the light in nanometers.
2 =
789
E AAL 4 |5 | 6
1| 2
sin()
cos()
tan()
HOME
cotan()
asin()
acos()
atan()
acotan()
sinh()
3
cosh()
tanh()
cotanh()
END
O Degrees O Radians
vol BACKSPACE
DEL
CLEAR
Submit
I give up!
Hint
Feedback
) Consider a crystal consisting of m + 1 lattice planes of spacing d, of total thickness t = md, being set for diffraction as depicted in Fig. 2. At the incidence angle ӨB, Braggs law is satisfied. Explain the phenomenon through which the angles Ө1 and Ө2 are the limiting angles at which the diffracted intensity falls to zero.
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 37.2 - Suppose the slit width in Figure 37.4 is made half...Ch. 37.3 - Cats eyes have pupils that can be modeled as...Ch. 37.3 - Suppose you are observing a binary star with a...Ch. 37.4 - Ultraviolet light of wavelength 350 nm is incident...Ch. 37.6 - A polarizer for microwaves can be made as a grid...Ch. 37.6 - Prob. 37.6QQCh. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - In Figure 37.7, show mathematically how many...
Ch. 37 - Prob. 5PCh. 37 - What If? Suppose light strikes a single slit of...Ch. 37 - Prob. 7PCh. 37 - Coherent light of wavelength 501.5 nm is sent...Ch. 37 - Prob. 9PCh. 37 - Prob. 10PCh. 37 - What is the approximate size of the smallest...Ch. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Impressionist painter Georges Seurat created...Ch. 37 - Prob. 16PCh. 37 - Consider an array of parallel wires with uniform...Ch. 37 - Prob. 18PCh. 37 - A grating with 250 grooves/mm is used with an...Ch. 37 - Show that whenever white light is passed through a...Ch. 37 - Light from an argon laser strikes a diffraction...Ch. 37 - Prob. 22PCh. 37 - You are working as a demonstration assistant for a...Ch. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33APCh. 37 - Laser light with a wavelength of 632.8 nm is...Ch. 37 - Prob. 35APCh. 37 - Prob. 36APCh. 37 - Prob. 37APCh. 37 - Prob. 38APCh. 37 - Prob. 39APCh. 37 - Prob. 40APCh. 37 - Prob. 41APCh. 37 - Prob. 42APCh. 37 - Prob. 43APCh. 37 - Prob. 44APCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Two closely spaced wavelengths of light are...Ch. 37 - Prob. 50CPCh. 37 - Prob. 51CPCh. 37 - In Figure P37.52, suppose the transmission axes of...Ch. 37 - Prob. 53CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forwardThe structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forwardProblem 2: Consider light that has its third minimum at an angle of 23.6° when it falls on a single slit of width 3.55 μm. Randomized Variables 9 = 23.6° w = 3.55 um D Find the wavelength of the light in nanometers. λ=1 sin() cos() cotan() asin() atan() acotan() tanh() cosh() O Degrees Hints: 2% deduction per hint. Hints remaining: 2 Submit tan() JU acos() E sinh() cotanh() Radians Hint ( + 7 8 9 4 5 6 1 0 VO BACKSPACE Feedback 2 3 All content © 2022 Expert TA, LLC DEL HOME END I give up! Feedback: 2% deduction per feedback. CLEARarrow_forward
- The limit to the eye’s visual acuity is related to diffraction by the pupil.D = 2.85 mmdh = 1.25 m a. What is the angle between two just-resolvable points of light for a 2.85 mm diameter pupil in radians, assuming an average wavelength of 550 nm? θmin = b. Take your result to be the practical limit for the eye. What is the greatest possible distance in km a car can be from you if you can resolve its two headlights, given they are 1.25 m apart? L= c. What is the distance between two just-resolvable points held at an arm’s length (0.800 m) from your eye in mm? da =arrow_forwardThe full width at half-maximum (FWHM) of a central diffraction maximum is defined as the angle between the two points in the pattern where the intensity is one-half that at the center of the pattern. (See figure (b).) (a) Does the intensity drop to one-half the maximum value when sin²α = a²/2? (b) Is a = 1.39 rad (about 80°) a solution to the transcendental equation of (a)? (c) Is the FWHM AÐ = 2sin¹(0.442 A/a), where a is the slit width? Calculate the FWHM of the central maximum for slit width (d) 1.17 A, (e) 5.03 A, and (f) 11.7 A. 20 20 Relative intensity 15 10 0.8 0.6 a=2 0.4 0.2 5 05 8 (degrees) (a) 10 15 20 20 Relative intensity 1.0 0.8 0.6 -A0- 0.4 0.2 a= 52 20 15 10 5 0 5 10 15 20 (degrees) (b)arrow_forwardProblem 7: Consider light falling on a single slit, of width 1.05 μm, that produces its first minimum at an angle of 33.6°.Randomized Variables θ = 33.6°w = 1.05 μm Calculate the wavelength of the light in nanometers.arrow_forward
- An electric current through an unknown gas produces several distinct wavelengths of visible light. Consider the first order maxima for the wavelengths 403 nm, 428 nm, 511 nm, and 682 nm of this unknown spectrum, when projected with a diffraction grating of 5,000 lines per centimeter.Randomized Variablesλ1 = 403 nmλ2 = 428 nmλ3 = 511 nmλ4 = 682 nm Part (a) What would the angle (in degrees) be for the 403 nm line? Part (b) What would the angle (in degrees) be for the 428 nm line? Part (c) What would the angle (in degrees) be for the 511 nm line? Part (d) What would the angle (in degrees) be for the 682 nm line? Part (e) Using this grating, what would be the angle (in degrees) of the second-order maximum of the 403 nm line?arrow_forwardFind the angular radius of the tenth bright fringe in a Michelson interfer- ometer when the central-path difference (2d) is (a) 1.50 mm and (b) 1.5 cm. The orange light of a krypton arc is 6057.8 ˚Aand that the interferometer is adjusted in each case so that the first bright fringe forms a maximum at the center of the pattern. Ans: (a) 4.885◦ , (b) 1.542◦arrow_forwardThe diffraction grating is a way of separating or dispersing light of different wavelengths, producing a spectrum of light. The grating interferes light constructively in particular directions: dsinθm=mλdsinθm=mλ For a particular angle, we calculate the wavelength. The grating constant (or line density) is 500 lines per mm -- every millimeter has 500 lines scratched onto it, equally spaced. The quantity d is the distance between the lines, and λ is the light wavelength. In the previous problem, calculate y2, where one of the second-order spots appears on the meter stick. Either that, or show that y2 can't be determined.arrow_forward
- The diffraction grating is a way of separating or dispersing light of different wavelengths, producing a spectrum of light. The grating interferes light constructively in particular directions: dsinθm=mλdsinθm=mλ For a particular angle, we calculate the wavelength. The grating constant (or line density) is 500 lines per mm -- every millimeter has 500 lines scratched onto it, equally spaced. The quantity d is the distance between the lines, and λ is the light wavelength. A meter stick shows the spots, and ym is position on the meter stick of the mth-order light beam. (Negative order is the same as positive order.) Calculate the light wavelength, λ in nm, given this information: The grating constant is 500 lines/mm. L = 31.5 cm y1 = 56.9 cm y-1 = 40.8 cm y0 isn't specified because of computer issues. (It's the average of y1 and y-1.)arrow_forwardIn Fig the central diffraction maximum contains exactly seven interference fringes, and in this case d/a = 4. (a) What must the ratio d/a be if the central maximum contains exactly five fringes? (b) In the case considered in part (a), how many fringes are contained within the first diffraction maximum on one side of the central maximum?arrow_forward632.8 nm) is used to calibrate a diffraction grating. If the first-order maximum occurs at 21.0°, what is the spacing between adjacent grooves in the grating? (In this problem, assume that the light is incident normally on the grating.) μm A helium-neon laser (1 =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY