Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 37, Problem 12P
To determine
The diameter of the beam at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume
a light source
with intensity of Io is
directed fom air
ab sor bing medium A with
of 2, If the absorption coefficient is
to
an
3
Ix 10
the following questions.
cm
answer
air
n=1
A, n=2
Io
= 0.001 cm
uno
cafle
medium A (Ii) ?
b)What is the initial intensity in
As the diameter of a laser beam increases
O a. The divergence of the beam will remain the same
O b. The intensity of the beam increases
O C. The divergence of the beam decreases
O d. The divergence of the beam increases
A laser beam with a total power of 22 watts is incident at a normal angle of incidence on a Lambertian surface. How much power reaches a detector with an area of 0.1 cm2 at an angle of 25 degrees located at a distance of 40 cm from where the beam strikes the surface? Please check closest answer.
0.525 mW
0.397 mW
0.247 mW
0.421 mW
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 37.2 - Suppose the slit width in Figure 37.4 is made half...Ch. 37.3 - Cats eyes have pupils that can be modeled as...Ch. 37.3 - Suppose you are observing a binary star with a...Ch. 37.4 - Ultraviolet light of wavelength 350 nm is incident...Ch. 37.6 - A polarizer for microwaves can be made as a grid...Ch. 37.6 - Prob. 37.6QQCh. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - In Figure 37.7, show mathematically how many...
Ch. 37 - Prob. 5PCh. 37 - What If? Suppose light strikes a single slit of...Ch. 37 - Prob. 7PCh. 37 - Coherent light of wavelength 501.5 nm is sent...Ch. 37 - Prob. 9PCh. 37 - Prob. 10PCh. 37 - What is the approximate size of the smallest...Ch. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Impressionist painter Georges Seurat created...Ch. 37 - Prob. 16PCh. 37 - Consider an array of parallel wires with uniform...Ch. 37 - Prob. 18PCh. 37 - A grating with 250 grooves/mm is used with an...Ch. 37 - Show that whenever white light is passed through a...Ch. 37 - Light from an argon laser strikes a diffraction...Ch. 37 - Prob. 22PCh. 37 - You are working as a demonstration assistant for a...Ch. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33APCh. 37 - Laser light with a wavelength of 632.8 nm is...Ch. 37 - Prob. 35APCh. 37 - Prob. 36APCh. 37 - Prob. 37APCh. 37 - Prob. 38APCh. 37 - Prob. 39APCh. 37 - Prob. 40APCh. 37 - Prob. 41APCh. 37 - Prob. 42APCh. 37 - Prob. 43APCh. 37 - Prob. 44APCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Two closely spaced wavelengths of light are...Ch. 37 - Prob. 50CPCh. 37 - Prob. 51CPCh. 37 - In Figure P37.52, suppose the transmission axes of...Ch. 37 - Prob. 53CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Radio telescopes are telescopes used for the detection of radio emission from space. Because radio waves have much longer wavelengths than visible light, the diameter of a radio telescope must be very large to provide good resolution. For example, the radio telescope in Penticton, BC in Canada, has a diameter of 26 m and can be operated at frequencies as high as 6.6 GHz. (a) What is the wavelength corresponding to this frequency? (b) What is the angular separation of two radio sources that can be resolved by this telescope? (c) Compare the telescope’s resolution with the angular size of the moon.arrow_forwardOften in optics scientists take advantage of effects that require very high intensity light. To get the desired effect a scientist uses a laser with power P = 0.0015 W to reach an intensity of I = 350 W/cm2 by focusing it through a lens of focal length f = 0.15 m. The beam has a radius of r = 0.0011 m when it enters the lens.Randomized VariablesP = 0.0015 WI = 350 W/cm2f = 0.15 mr = 0.0011 m Part (a) Express the radius of the beam, rp, at the point where it reaches the desired intensity in terms of the given quantities. (In other words, what radius does the beam have to have after passing through the lens in order to have the desired intensity?) Part (b) Give an expression for the tangent of the angle that the edge of the beam exits the lens with with respect to the normal to the lens surface, in terms of r and f? Part (c) Express the distance, D, between the lens's focal point and the illuminated object using tan(α) and rp. Part (d) Find the distance, D, in centimeters.arrow_forwardnetab The drawing shows a laser beam shining on a plane mirror that is perpendicular to the floor. The beam's angle of incident is 36.5°. The beam emerges from the laser at a point that is 1.10 m from the mirror and 1.80 m above the floor. After the DCx reflection, how far from the base of the mirror does the beam strike the floor? -1.10 m- 1.80 m Floor 1,316 étv 20 MacBook Air 80 F7 F5 esc F3 F4 F2 F1 & # $ % 3 4 * 00 つarrow_forward
- A Laser emitting light beam at frequency 500 THz has a diameter of its waist equal to 1.05 mm. Find the distance from the Laser at which the beam will make a spot of radius 5 cm.arrow_forwardThe intensity 1 of light at a depth of x meters below the surface of a lake satisfies the differential equation d l/dx = (-1.4) 1. (a) At what depth is the intensity half the intensity lo at the surface. 0.495m 0.258m 0.654m 0.754marrow_forwardDetermine the shift in the wavelength (in m) of scattered x-rays that are observed at an angle of 50.6° to the incident beam.arrow_forward
- How thick is a layer of oil floating on a 52cm bucket of water. You measure your laser beam to take 2.33 ns going straight through the layersarrow_forwardA laser used in LASIK eye surgery produces 55 pulses per second. The wavelength is 220.0 nm (in air), and each pulse lasts 10.0 ps. The average power emitted by the laser is 120.0 mW and the beam diameter is 0.800 mm. How long (in centimeters) is a single pulse of the laser in air?arrow_forwardFind the range in wavelengths (in vacuum) for visible light in the frequency range between 4x1014 Hz (red light) and 7.9 x1014 Hz (violet light). Express the answers in nanometer. (1 nm = 10-9m)arrow_forward
- A glass tube with an internal diameter ofd = 50 cm and wall thickness of t = 5 cm is filled with chemical liquid. When a He-Ne laser light beam perpendicularly passes through this glass tube, the 1o). Assume that the coefficient of absorption 0.01 cm-1. Compute the coefficient of absorption of the liquid inside the tube. exit light energy (intensity) decreases by half (Ie of the glass is 2agarrow_forwardOften in optics scientists take advantage of effects that require very high intensity light. To get the desired effect a scientist uses a laser with power P = 0.0065 W to reach an intensity of I = 170 W/cm2 by focusing it through a lens of focal length f = 0.11 m. The beam has a radius of r = 0.0011m when it enters the lens. Randomized VariablesP = 0.0065 WI = 170 W/cm2f = 0.11 mr = 0.0011 Part (a) Express the radius of the beam, rp, at the point where it reaches the desired intensity in terms of the given quantities. (In other words, what radius does the beam have to have after passing through the lens in order to have the desired intensity?) Part (b) Give an expression for the tangent of the angle that the edge of the beam exits the lens with with respect to the normal to the lens surface, in terms of r and f? Part (c) Express the distance, D, between the lens's focal point and the illuminated object using tan(α) and rp. Part (d) Find the distance, D, in centimeters.…arrow_forward2.3 The peak power of a ruby laser is 100 megawatts (MW). If the beam is focused to a spot 10 microns (u) in diameter, find the irradiance and the amplitude of the electric field of the light wave at the focal point. The index of refraction is n 1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY