
(a)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments.
For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of
Root word represents the longest continuous carbon skeleton of the organic molecule.
(b)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, amines. alcohol etc. For example alkynes molecules, suffix will be ‘yne’, if amine presence of given molecules, suffix will be “ine”.
Root word represents the longest continuous carbon skeleton of the organic molecule.
(c)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, amines. alcohol etc. For example alkynes molecules, suffix will be ‘yne’, if amine presence of given molecules, suffix will be “ine”.
Root word represents the longest continuous carbon skeleton of the organic molecule.
(d)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, amines. alcohol etc. For example alkynes molecules, suffix will be ‘yne’, if alcohol presence of given molecules, suffix will be “ol”.
Root word represents the longest continuous carbon skeleton of the organic molecule.
(e)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, amines. alcohol etc. For example alkynes molecules, suffix will be ‘yne’, if alcohol presence of given molecules, suffix will be “ol”.
Root word represents the longest continuous carbon skeleton of the organic molecule.
(f)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, amines. alcohol etc. For example alkynes molecules, suffix will be ‘yne’, if alcohol presence of given molecules, suffix will be “ol”.
Root word represents the longest continuous carbon skeleton of the organic molecule.

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
ORGANIC CHEMISTRY-W/S.G+SOLN.MANUAL
- Determine the structures of the missing organic molecules in the following reaction: X+H₂O H* H+ Y OH OH Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. X Sarrow_forwardPredict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. HO. O :☐ + G Na O.H Click and drag to start drawing a structure. XS xs H₂Oarrow_forwardWhat are the angles a and b in the actual molecule of which this is a Lewis structure? H H C H- a -H b H Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal groups may have slightly different sizes. a = b = 0 °arrow_forward
- What are the angles a and b in the actual molecule of which this is a Lewis structure? :0: HCOH a Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes. a = 0 b=0° Sarrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H OH O OH +H OH X Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structure of the missing organic molecule X. Click and drag to start drawing a structure.arrow_forwardIdentify the missing organic reactant in the following reaction: x + x O OH H* + ☑- X H+ O O Х Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H₂O) are not shown. In the drawing area below, draw the skeletal ("line") structure of the missing organic reactant X. Click and drag to start drawing a structure. Carrow_forward
- CH3O OH OH O hemiacetal O acetal O neither O 0 O hemiacetal acetal neither OH hemiacetal O acetal O neither CH2 O-CH2-CH3 CH3-C-OH O hemiacetal O acetal CH3-CH2-CH2-0-c-O-CH2-CH2-CH3 O neither HO-CH2 ? 000 Ar Barrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 2 2. n-BuLi 3 Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure.arrow_forwardPredict the products of this organic reaction: NaBH3CN + NH2 ? H+ Click and drag to start drawing a structure. ×arrow_forward
- Predict the organic products that form in the reaction below: + OH +H H+ ➤ ☑ X - Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Garrow_forwardPredict the organic products that form in the reaction below: OH H+ H+ + ☑ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. ✓ marrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H H+ Y Z ☑ ☑ Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X, Y, and Z. You may draw the structures in any arrangement that you like, so long as they aren't touching. Molecule X shows up in multiple steps, but you only have to draw its structure once. Click and drag to start drawing a structure. AP +arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Macroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks ColeIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning





