![Student's Study Guide and Solutions Manual for Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780134066585/9780134066585_largeCoverImage.gif)
(a)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments.
For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of
Root word represents the longest continuous carbon skeleton of the organic molecule.
(b)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, amines. alcohol etc. For example alkynes molecules, suffix will be ‘yne’, if amine presence of given molecules, suffix will be “ine”.
Root word represents the longest continuous carbon skeleton of the organic molecule.
(c)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, amines. alcohol etc. For example alkynes molecules, suffix will be ‘yne’, if amine presence of given molecules, suffix will be “ine”.
Root word represents the longest continuous carbon skeleton of the organic molecule.
(d)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, amines. alcohol etc. For example alkynes molecules, suffix will be ‘yne’, if alcohol presence of given molecules, suffix will be “ol”.
Root word represents the longest continuous carbon skeleton of the organic molecule.
(e)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, amines. alcohol etc. For example alkynes molecules, suffix will be ‘yne’, if alcohol presence of given molecules, suffix will be “ol”.
Root word represents the longest continuous carbon skeleton of the organic molecule.
(f)
Interpretation:
The systematic name and common name of the given amine compound has to be written and whether it is primary or secondary or tertiary amine has to be ascertained.
Concept introduction:
The many of organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix, suffix and root word.
The bond-line structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Prefix: Represents the substituent present in the molecule and its position in the root name.
Suffix: Denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, amines. alcohol etc. For example alkynes molecules, suffix will be ‘yne’, if alcohol presence of given molecules, suffix will be “ol”.
Root word represents the longest continuous carbon skeleton of the organic molecule.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 3 Solutions
Student's Study Guide and Solutions Manual for Organic Chemistry
- X Draw the major products of the elimination reaction below. If elimination would not occur at a significant rate, check the box under the drawing area instead. ది www. Cl + OH Elimination will not occur at a significant rate. Click and drag to start drawing a structure.arrow_forwardNonearrow_forward1A H 2A Li Be Use the References to access important values if needed for this question. 8A 3A 4A 5A 6A 7A He B C N O F Ne Na Mg 3B 4B 5B 6B 7B 8B-1B 2B Al Si P 1B 2B Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Ha ****** Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Analyze the following reaction by looking at the electron configurations given below each box. Put a number and a symbol in each box to show the number and kind of the corresponding atom or ion. Use the smallest integers possible. cation anion + + Shell 1: 2 Shell 2: 8 Shell 3: 1 Shell 1 : 2 Shell 2 : 6 Shell 1 : 2 Shell 2: 8 Shell 1: 2 Shell 2: 8arrow_forward
- Nonearrow_forwardIV. Show the detailed synthesis strategy for the following compounds. a. CH3CH2CH2CH2Br CH3CH2CCH2CH2CH3arrow_forwardDo the electrons on the OH participate in resonance with the ring through a p orbital? How many pi electrons are in the ring, 4 (from the two double bonds) or 6 (including the electrons on the O)?arrow_forward
- Predict and draw the product of the following organic reaction:arrow_forwardNonearrow_forwardRedraw the molecule below as a skeletal ("line") structure. Be sure to use wedge and dash bonds if necessary to accurately represent the direction of the bonds to ring substituents. Cl. Br Click and drag to start drawing a structure. : ☐ ☑ Parrow_forward
- K m Choose the best reagents to complete the following reaction. L ZI 0 Problem 4 of 11 A 1. NaOH 2. CH3CH2CH2NH2 1. HCI B OH 2. CH3CH2CH2NH2 DII F1 F2 F3 F4 F5 A F6 C CH3CH2CH2NH2 1. SOCl2 D 2. CH3CH2CH2NH2 1. CH3CH2CH2NH2 E 2. SOCl2 Done PrtScn Home End FA FQ 510 * PgUp M Submit PgDn F11arrow_forwardNonearrow_forwardPlease provide a mechanism of synthesis 1,4-diaminobenzene, start from a benzene ring.arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Macroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks ColeIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960060/9781305960060_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580350/9781305580350_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305081079/9781305081079_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577190/9781305577190_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285869759/9781285869759_smallCoverImage.gif)