Concept explainers
A wide beam of laser light with a wavelength of 632.8 nm is directed through several narrow parallel slits, separated by 1.20 mm, and falls on a sheet of photographic film 1.40 m away. The exposure time is chosen so that the film stays unexposed everywhere except at the central region of each bright fringe. (a) Find the distance between these interference maxima. The film is printed as a transparency; it is opaque everywhere except at the exposed lines. Next, the same beam of laser light is directed through the transparency and allowed to fall on a screen 1.40 m beyond. (b) Argue that several narrow, parallel, bright regions, separated by 1.20 mm, appear on the screen as real images of the original slits. (A similar train of thought, at a soccer game, led Dennis Gabor to invent holography.)
Trending nowThis is a popular solution!
Chapter 37 Solutions
Physics for Scientists and Engineers
- For 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forwardBoth sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forwardUsing the result of the problem two problems prior, find the wavelength of light that produces fringes 7.50 mm apart on a screen 2.00 m from double slits separated by 0.120 mm.arrow_forward
- A Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardWhen a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forwardIn a Young's double-slit experiment, a set of parallel slits with a separation of 0.112 mm is illuminated by light having a wavelength of 550 nm and the interference pattern observed on a screen 3.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a fourth order bright fringe on the screen? um (b) What is the difference in path lengths from the two slits to the location of the fourth dark fringe on the screen, away from the center of the pattern? umarrow_forward
- (a) Young's double-slit experiment is performed with 550-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 8.00 mm from the central maximum. Determine the spacing of the slits (in mm). 1.31 mm (b) What If? What are the smallest and largest wavelengths of visible light that will also produce interference minima at this location? (Give your answers, in nm, to at least three significant figures. Assume the visible light spectrum ranges from 400 nm to 700 nm.) smallest wavelength 419 largest wavelength 699 X nm X nmarrow_forward(a) Young's double-slit experiment is performed with 550-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 8.00 mm from the central maximum. Determine the spacing of the slits (in mm). 1.31 mm (b) What If? What are the smallest and largest wavelengths of visible light that will also produce interference minima at this location? (Give your answers, in nm, to at least three significant figures. Assume the visible light spectrum ranges from 400 nm to 700 nm.) smallest wavelength 419 X nm largest wavelength 699 X nm (a) Young's double-slit experiment is performed with 550-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 8.00 mm from the central maximum. Determine the spacing of the slits (in mm). 1.31 mm (b) What If? What are the smallest and largest wavelengths of visible light that will also produce interference minima at this location? (Give your answers, in nm, to…arrow_forwardA monochromatic beam of light has a wavelength of 403 nm. It is diffracted through a set of double slits, and produces a maxima of order 6 at an angle of 1.00 degrees. What is the separation of the slits in m?arrow_forward
- (a) Young's double-slit experiment is performed with 525-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 7.35 mm from the central maximum. Determine the spacing of the slits (in mm). 1.36 mm (b) What If? What are the smallest and largest wavelengths of visible light that will also produce interference minima at this location? (Give your answers, in nm, to at least three significant figures. Assume the visible light spectrum ranges from 400 nm to 700 nm.) smallest wavelength 434 largest wavelength ✔nm x nm 000 Need Help? Read Watch tarrow_forwardIn a Young's double-slit experiment, a set of parallel slits with a separation of 0.110 mm is illuminated by light having a wavelength of 572 nm and the interference pattern observed on a screen 4.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a second order bright fringe on the screen? um (b) What is the difference in path lengths from the two slits to the location of the second dark fringe on the screen, away from the center of the pattern? um Need Help? Read Itarrow_forwardIn a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm is illuminated by light having a wavelength of 569 nm and the interference pattern observed on a screen 3.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a second order bright fringe on the screen? μm (b) What is the difference in path lengths from the two slits to the location of the second dark fringe on the screen, away from the center of the pattern? umarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill