Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 8OQ
To determine
The intensity of the light striking the film when you increase the aperture diameter of the camera by a factor of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If you increase the aperture diameter of a camera by a factor of 3, how is the intensity of the light striking the film affected? (a) It increases by a factor of 3. (b) It decreases by a factor of 3. (c) It increases by a factor of 9. (d) It decreases by a factor of 9. (e) Increasing the aperture doesn’t affect the intensity.
An object is placed halfway between a planar (flat) mirror and a diverging lens with a focal
length of -25cm. The distance between the mirror and the lens is 30cm. You view the image of
the object's reflection in the planar mirror by looking through the lens. Where does this image
appear?
Light with a wavelength of 420nm in air is incident on a thin film of water (n=1.333) on top of
a plate of glass (n=1.56). Calculate the two smallest thickness for the water film that will
produce dark spots from reflection.
Paragraph
Add a File
BI U v
v
ON
+ v
11.
>>
A ray of light is incident on a glass prism (n = 1.2) with an angle of incidence 0,=40°. The ray
emerges from the opposite side of the prism with an angle 04. The apex angle of the prism is
60°. The deviation angle, 8, between the incident ray and the emerging ray is then:
0, = 40°
09
Nair =1
13.8
51.3
38.4"
O 44.5°
Chapter 36 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 36.1 - Prob. 36.1QQCh. 36.2 - You wish to start a fire by reflecting sunlight...Ch. 36.2 - Consider the image in the mirror in Figure 35.14....Ch. 36.3 - Prob. 36.4QQCh. 36.3 - Prob. 36.5QQCh. 36.4 - What is the focal length of a pane of window...Ch. 36.6 - Prob. 36.7QQCh. 36.7 - Prob. 36.8QQCh. 36 - Prob. 1OQCh. 36 - Prob. 2OQ
Ch. 36 - Prob. 3OQCh. 36 - Prob. 4OQCh. 36 - Prob. 5OQCh. 36 - Prob. 6OQCh. 36 - Prob. 7OQCh. 36 - Prob. 8OQCh. 36 - Prob. 9OQCh. 36 - Prob. 10OQCh. 36 - Prob. 11OQCh. 36 - Prob. 12OQCh. 36 - Prob. 13OQCh. 36 - Prob. 14OQCh. 36 - Prob. 1CQCh. 36 - Prob. 2CQCh. 36 - Prob. 3CQCh. 36 - Prob. 4CQCh. 36 - Prob. 5CQCh. 36 - Explain why a fish in a spherical goldfish bowl...Ch. 36 - Prob. 7CQCh. 36 - Prob. 8CQCh. 36 - Prob. 9CQCh. 36 - Prob. 10CQCh. 36 - Prob. 11CQCh. 36 - Prob. 12CQCh. 36 - Prob. 13CQCh. 36 - Prob. 14CQCh. 36 - Prob. 15CQCh. 36 - Prob. 16CQCh. 36 - Prob. 17CQCh. 36 - Prob. 1PCh. 36 - Prob. 2PCh. 36 - (a) Does your bathroom mirror show you older or...Ch. 36 - Prob. 4PCh. 36 - Prob. 5PCh. 36 - Two flat mirrors have their reflecting surfaces...Ch. 36 - Prob. 7PCh. 36 - Prob. 8PCh. 36 - Prob. 9PCh. 36 - Prob. 10PCh. 36 - A convex spherical mirror has a radius of...Ch. 36 - Prob. 12PCh. 36 - An object of height 2.00 cm is placed 30.0 cm from...Ch. 36 - Prob. 14PCh. 36 - Prob. 15PCh. 36 - Prob. 16PCh. 36 - Prob. 17PCh. 36 - Prob. 18PCh. 36 - (a) A concave spherical mirror forms an inverted...Ch. 36 - Prob. 20PCh. 36 - Prob. 21PCh. 36 - A concave spherical mirror has a radius of...Ch. 36 - Prob. 23PCh. 36 - Prob. 24PCh. 36 - Prob. 25PCh. 36 - Prob. 26PCh. 36 - Prob. 27PCh. 36 - Prob. 28PCh. 36 - One end of a long glass rod (n = 1.50) is formed...Ch. 36 - Prob. 30PCh. 36 - Prob. 31PCh. 36 - Prob. 32PCh. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - An objects distance from a converging lens is 5.00...Ch. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - A converging lens has a focal length of 10.0 cm....Ch. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - A simple model of the human eye ignores its lens...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71APCh. 36 - Prob. 72APCh. 36 - Prob. 73APCh. 36 - The distance between an object and its upright...Ch. 36 - Prob. 75APCh. 36 - Prob. 76APCh. 36 - Prob. 77APCh. 36 - Prob. 78APCh. 36 - Prob. 79APCh. 36 - Prob. 80APCh. 36 - Prob. 81APCh. 36 - In many applications, it is necessary to expand or...Ch. 36 - Prob. 83APCh. 36 - Prob. 84APCh. 36 - Two lenses made of kinds of glass having different...Ch. 36 - Prob. 86APCh. 36 - Prob. 87APCh. 36 - Prob. 88APCh. 36 - Prob. 89APCh. 36 - Prob. 90APCh. 36 - Prob. 91APCh. 36 - Prob. 92APCh. 36 - Prob. 93CPCh. 36 - A zoom lens system is a combination of lenses that...Ch. 36 - Prob. 95CPCh. 36 - Prob. 96CPCh. 36 - Prob. 97CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light enters a prism of crown glass and refracts at an angle of 5.00 with respect to the normal at the interface. The crown glass has a mean index of refraction of 1.51. It is combined with one flint glass prism (n = 1.65) to produce no net deviation. a. Find the apex angle of the flint glass. b. Assume the index of refraction for violet light (v = 430 nm) is nv = 1.528 and the index of refraction for red light (r = 768 nm) is nr = 1.511 for crown glass. For flint glass using the same wavelengths, nv = 1.665 and nr = 1.645. Find the net dispersion.arrow_forwardLight passes from a material with index of refraction 1.3 into one with index of refraction 1.2. Compared with the incident ray, what happens to the refracted ray? (a) It bends toward the normal. (b) It is undeflected. (c) It bends away from the normal.arrow_forwardThe index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forward
- KEY TERMS 1. reflection (7.1) 2. ray 3. law of reflection 4. specular reflection 5. diffuse reflection 6. refraction (7.2) 7. index of refraction 8. total internal reflection 9. dispersion 10. focal length (7.3) 11. concave (converging) mirror 12. convex (diverging) mirror 13. real image 14. virtual image 15. converging lens (7.4) 16. diverging lens 17. polarization (7.5) 18. linearly polarized light 19. diffraction (7.6) 20. principle of superposition 21. constructive interference 22. destructive interference For each of the following items, fill in the number of the appropriate Key Term from the preceding list. h. _____ A change in the direction of light at a surfacearrow_forwardA ray of light strikes a flat, 2.00-cm-thick block of glass (n = 1.50) at ail angle of 30.0 with respect to the normal (Fig. P22.18). (a) Find the angle of refraction at the lop surface. (b) Find the angle of incidence at the bottom surface and the refracted angle. (c) Find the lateral distance d by which the light beam is shifted. (d) Calculate the speed of light in the glass and (e) the time required for the light to pass through the glass block. (f) Is the travel time through the block affected by the angle of incidence? Explain.arrow_forwardLight traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forward
- KEY TERMS 1. reflection (7.1) 2. ray 3. law of reflection 4. specular reflection 5. diffuse reflection 6. refraction (7.2) 7. index of refraction 8. total internal reflection 9. dispersion 10. focal length (7.3) 11. concave (converging) mirror 12. convex (diverging) mirror 13. real image 14. virtual image 15. converging lens (7.4) 16. diverging lens 17. polarization (7.5) 18. linearly polarized light 19. diffraction (7.6) 20. principle of superposition 21. constructive interference 22. destructive interference For each of the following items, fill in the number of the appropriate Key Term from the preceding list. b. _____ i = rarrow_forwardThe core of an optical fiber transmits light with minimal loss if it is surrounded by what? (a) water (b) diamond (c) air (d) glass (e) fused quartzarrow_forwardWhich of the following statements are (or could be) true? Choose all that apply. A shoe at a temperature of 13 K will not emit EM waves. The index of refraction of a newly discovered transparent material is -1.8. In a vacuum, infrared waves move faster than x-rays. Total internal reflection will occur if the critical angle is greater than the incident angle. A light ray was reflected. The incident angle was 53° and the reflected angle was 9⁰. If do= ∞, then d = f.arrow_forward
- In Figure, light is incident at angle 0,=40.1° on a boundary between two transparent materials. Some of the light travels down through the next three layers of transparent materials, while some of it reflects upward and then escape into the air. If n;=1.3, n,= 1.4, n;=1.32, and ng= 1.45, what is Air the value of (a) 0g and (b) 04?arrow_forwardWhich of the following statements are (or could be) true? Choose all that apply. A rock at a temperature of 49 K will not emit EM waves. The index of refraction of a newly discovered transparent material is -1.1. In a vacuum, x-rays move slower than UV rays. Total internal reflection will not occur if the critical angle is greater than the incident angle. A light ray was reflected. The incident angle was 65° and the reflected angle was 65º. If do, then d₁ = 0.arrow_forwardLight containing wavelengths of 400 nm, 500 nm, and 650 nm is incident from air on a block of crown glass at an angle of 49.7°. (Assume crown glass has refractive indices of 400 nm = 1.53, 500 nm = 1.52, and 650 nm = 1.51.) (a) Are all colors refracted alike, or is one color bent more than the others? 400 nm light is bent the most 500 nm light is bent the most 650 nm light is bent the most all colors are refracted alike (b) Calculate the angle of refraction in each case to verify your answer. (Enter your answer to at least two decimal places.) 0400 nm #500 nm 650 nm = ° о оarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY