
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 25RQ
What is the attractive feature of variable polarity power supplies?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
using the theorem of three moments, find all the reactions and supports, I need concise calculations only. the answers are at the bottom, I need concise steps and minimal explanations
In an industrial facility, a counter-flow double-pipe heat exchanger uses superheated steam at a temperature of 155°C to
heat feed water at 30°C. The superheated steam experiences a temperature drop of 70°C as it exits the heat exchanger.
The water to be heated flows through the heat exchanger tube of negligible thickness at a constant rate of 3.47 kg/s. The
convective heat transfer coefficient on the superheated steam and water side is 850 W/m²K and 1250 W/m²K,
respectively. To account for the fouling due to chemical impurities that might be present in the feed water, assume
a fouling factor of 0.00015 m² K/W for the water side.
The specific heat of water is determined at an average temperature of (30+70)°C/2 = 50°C and is taken to be Cp
J/kg-K.
Water
Steam
Determine the heat exchanger area required to maintain the exit temperature of the water to a minimum of 70°C.
The heat exchanger area required is
Stress, ksi
160
72
150-
140
80
70
༄ ྃ ༈ ཎྜ རྦ ༅ ཎྜ ྣཧྨ ➢
130
120
110
100
90
2.0
2.8
3.6
4.4
5
Wire diameter, mm
6.0
6.8
2
7.6
8.4
Compression and extension springs.
ASTM A227 Class II
Light service
Average service
0.020
0.060
0.100
0.140
0.180
0.220
0.260
0.300
0.340
0.380
0.420
0.460
0.500
Wire diameter, in
Torsional stress due to initial tension, ksi
10
४
20
Preferred
range
100
Stress, MPa
9.2
10.0
10.8
11.6
12.4
1100
1035
965
895
825
760
Severe service
690
620
550
50
150
3456789 10 11 12 13 14 15 16
Spring index, C = DJD
FIGURE 18-21 Recommended torsional shear stress in an extension spring due to initial tension (Data from Associated
Spring, Barnes Group, Inc.)
50
200
485
Stress, MPa
Chapter 36 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 36 - What is the principal fuel gas used in oxyfuel-gas...Ch. 36 - Why does an oxyfuel-gas welding torch usually have...Ch. 36 - What is the location of the maximum temperature in...Ch. 36 - What function or functions are performed by the...Ch. 36 - What three types of flames can be produced by...Ch. 36 - Which type of oxyfuel flame is most commonly used?Ch. 36 - What are some of the alternative fuels (other than...Ch. 36 - Why might a welder want to change the tip size (or...Ch. 36 - What is filler metal, and why might it be needed...Ch. 36 - What is the role of a welding flux?
Ch. 36 - Oxyfuel-gas welding has a low rate of heat input....Ch. 36 - For what types of applications is ox\fuel-gas...Ch. 36 - What are some of the more attractive features of...Ch. 36 - How does pressure gas welding differ from the...Ch. 36 - In what way does the torch cutting of ferrous...Ch. 36 - Why might it be possible to use only an oxygen...Ch. 36 - How does an oxyacetylene cutting torch differ from...Ch. 36 - What are some of the ways in which cutting torches...Ch. 36 - When might stack cutting be an attractive process?Ch. 36 - What modification must be incorporated into a...Ch. 36 - If a curved plate is to be straightened by flame...Ch. 36 - Why does the flame-straightening process not work...Ch. 36 - What sorts of problems plagued early attempts to...Ch. 36 - What are the three basic types of current and...Ch. 36 - What is the attractive feature of variable...Ch. 36 - What is the difference between a consumable and...Ch. 36 - What are the three types of metal transfer that...Ch. 36 - What are some of the process variables that must...Ch. 36 - What are the four primary consumable-electrode...Ch. 36 - What are some general properties of the...Ch. 36 - What are some of the functions of the electrode...Ch. 36 - How are welding electrodes commonly classified,...Ch. 36 - Why are shielded metal arc electrodes often baked...Ch. 36 - What are the functions of the fluxing constituents...Ch. 36 - What benefit can be obtained by placing iron...Ch. 36 - Why are shielded metal arc electrodes generally...Ch. 36 - Why is the shielded metal arc welding process...Ch. 36 - What are some of the attractive features of the...Ch. 36 - What is the advantage of placing the flux in the...Ch. 36 - What feature enables the welding current in FCAW...Ch. 36 - What are some of the advantages of gas metal arc...Ch. 36 - Describe the relative performance of argon,...Ch. 36 - For what welding conditions would short circuit...Ch. 36 - What is the least desired mode of metal transfer?Ch. 36 - Which of the metal transfer mechanisms is most...Ch. 36 - Describe the metal transfer that occurs during...Ch. 36 - What are some of the benefits that can be obtained...Ch. 36 - What are some of the attractive features of gas...Ch. 36 - What are some of the primary process variables in...Ch. 36 - What is the attractive feature of advanced gas...Ch. 36 - What other gas metal arc welding modifications...Ch. 36 - What benefits can be gained by using a rectangular...Ch. 36 - What are some of the functions of the flux in...Ch. 36 - What are some of the attractive features of...Ch. 36 - What is the primary goal or objective in bulk...Ch. 36 - What is the current (or proper) designation for...Ch. 36 - What types of shielding gases are used in the gas...Ch. 36 - What are some of the features that must be...Ch. 36 - What can be done to increase the rate of filler...Ch. 36 - What are some of the attractive features of gas...Ch. 36 - For the GTAW process, what are the attractive...Ch. 36 - What are some of the advantages of employing a...Ch. 36 - How are the spot welds produced by gas tungsten...Ch. 36 - How is the heating of the workpiece during plasma...Ch. 36 - What are the two different gas flows in plasma arc...Ch. 36 - What are some of the attractive features of plasma...Ch. 36 - What is the keyhole effect in plasma arc welding?Ch. 36 - What is the primary difference between plasma arc...Ch. 36 - What is the primary objective of stud welding?Ch. 36 - What is the function of the ceramic ferrule placed...Ch. 36 - 71- Describe the sequence of activity in flash...Ch. 36 - How is percussion welding different from flash...Ch. 36 - Prob. 73RQCh. 36 - Describe the ideal thermal cut.Ch. 36 - What is the purpose of the oxygen in oxygen arc...Ch. 36 - Why is plasma arc cutting an attractive wav of...Ch. 36 - What techniques can be used to constrict the arc...Ch. 36 - Compared to oxyfuel cutting, what are some of the...Ch. 36 - How can a nontransferred arc plasma torch be used...Ch. 36 - What are some of the attractive features of...Ch. 36 - What are some of the benefits of performing plasma...Ch. 36 - Describe the relative size of the heat-affected...Ch. 36 - Why might the residual stresses induced during...Ch. 36 - Prob. 84RQCh. 36 - What are typical arc welding currents and...Ch. 36 - What are the attractive features or benefits of an...Ch. 36 - What are jigs, fixtures or positioners, and how...Ch. 36 - Describe thermal deburring.Ch. 36 - When welds fail, it is not uncommon for the...Ch. 36 - For each of the conditions in Problem l, could...Ch. 36 - Using the Internet or technical literature,...Ch. 36 - Using the Internet or technical literature,...Ch. 36 - Identify a new or recent EPA or OSHA regulation...Ch. 36 - Magnesium, while not as strong as steel or...Ch. 36 - Numerous joints appear in bicycle frames, some of...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Determine the normal force that the 100-lb plate A exerts on the 30-lb plate B. Prob. F6-17
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
In Exercises 39 through 44, write a program to carry out the stated task. Cost of Electricity The cost of the e...
Introduction To Programming Using Visual Basic (11th Edition)
Characters for the ASCII Codes Write a program that uses a loop to display the characters for the ASCII codes 0...
Starting Out with C++ from Control Structures to Objects (9th Edition)
CONCEPT QUESTIONS
15.CQ3 The ball rolls without slipping on the fixed surface as shown. What is the direction ...
Vector Mechanics for Engineers: Statics and Dynamics
Big data Big data describes datasets with huge volumes that are beyond the ability of typical database manageme...
Management Information Systems: Managing The Digital Firm (16th Edition)
Repeat any of the previous Practice Programs using JOptionPane, which is described in the graphics supplement a...
Java: An Introduction to Problem Solving and Programming (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Bolted Joint Design Bolted Frames Total Force due to door weight: P = 240 lb Number of Bolts: N = Distance to Bolt C/L: a = 4 N/A Bolt Material - Allowable shear stress of bolt material: T₂ = x Distance from Bolt centroid to bolt: x = y Distance from Bolt centroid to bolt: y = Degrees per Radian- Results y-Load on each bolt: F, = Moment resisted by bolt pattern: M = Radial distance from Bolt centroid to bolt: r = Sum squares of all radial distances: Σr² Force on each bolt to resist moment: F, - Angle for force composition: e= X-Force on each bolt to resist moment: F- y-Force on each bolt to resist moment: Fly Total y-Force on each bolt: Fy = Resultant force on bolt 1: R₁ = Required shear stress area for a bolt: A₂ = ASTM Grade A307 Steel 10,000 0 psi from Table 20-1 3.0 57.296 in degrees lb per bolt lb-in Formula FS-P/N M-Px XB r = (x² + y²)0.5 in² Σ 4r² Mr F₁ = Στ lb degrees lb lb lb Minimum Bolt Diameter: Din = Rounded up Bolt Diameter: D = 55 P. 1.5 in 2 in (3x) 1 in This bracket…arrow_forwardUniversity of Babylon Collage of Engineering/ Al-Musayab Department of Automobiles Final Examination/ Stage: 3rd Notes: Answer 4 questions only 2023-2202 Subject: Theory of vehicles Date: 2023\06\10-Saturday Time: Three Hours Course 2nd Attempt 1st Q1: A Hooke's coupling connects two shafts whose axes are inclined at 30°. The of the driven shaft? Find the maximum value of retardation or acceleration and driving shaft rotates uniformly at 600 rpm. What are the extreme angular velocities state the angle where both will occur. (12.5 Marks) Q2: Four masses, A, B, C, and D), revolve at equal radii and are equally spaced along a shaft. The mass B is 7 kg, and the radius of C and D make angles of 90° and 240°, respectively, with the radius of B. Find the magnitude of the masses A, C, and D and the angular position of A so that the system may be completely balanced. (12.5 Marks) Q3: A cam has straight worked faces that are tangential to a base circle of diameter 90 mm. The follower is a roller…arrow_forwardProblem 18-26 Added Extension Springs Spring Material ASTM A227 Modulus of Elasticity of the Material in Shear: G 1.150E+07 psi Average Service Max Operating Load: F₁ = 100 lb Max Length between attachment points: L₁ = 60.00 in 20.00 lb 26.00 1.400 Min Operating Load: F₁ = Min Length between attachment points: L₁ = Maximum Outside Diameter = in in Results Note: you select a wire diameter from the "US steel wire gage" column in table 18-2 Formula k = AF/AL k = (F0-F1)/(Lo - L₁) Spring Rate: k = lb/in Assumed Trial Outside Diameter: OD = Assumed Trial Mean: D ma Assumed Design Stress in Spring: Tda in 1.070 in 102,000 psi Assumed Wahl Factor: K = 1.2 Calculated Wire Diameter: Dwa Actual Wire Diameter: Dw Actual outer diameter: OD = Actual inner diameter: ID= Spring Index: C = See Figure 18-8 Dw= [8KF Dm πTd 1/3 in 5' 5' 5' 5' This corresponds to US Steel 9 wire gage ID = Dm - Dw C = Dm/Dw 4C - 1 0.615 K = + 4C - с Wahl Factor: K = 8KFDm 8KFC T = TD πD Stress in Spring at F = Fo: To psi…arrow_forward
- CHAIN DRIVE DESIGN Initial Input Data: Application: Garage Door Opener Drive type: AC Motor Driven machine Chain and Sprocket to pull the door up Degrees per Radian: 57.2958 degrees Sprocket Diameter: D = 1.690 in Number of strands: Chain number: 1 40 Service factor: 1.3 Table 7-10 No. of teeth Computed Data: Actual Motor Power Input: 0.000 hp Sprocket Speed (for sprocket attached to gear shaft) Design power: 0.00 rpm 0 hp 11 12 0.06 0.15 0.29 0.56 0.99 1.09 1.61 2.64 TABLE 7-7 Horsepower Ratings-Single Strand Roller Chain No. 40 0.500 inch pitch 10 25 50 100 180 200 300 500 700 900 1000 1: 0.06 0.14 0.27 0.52 0.91 1.00 1.48 2.42 3.34 4.25 4.70 ! 3.64 4.64 5.13 13 0.07 0.16 0.31 0.61 1.07 1.19 1.75 2.86 3.95 5.02 5.56 Design Decisions-Chain Type and Teeth Numbers: 14 Chain number: Use Table 7-7 Chain pitch: p = in 15 Number of Teeth: N = Per Table 7-7 16 0.08 0.20 0.39 0.75 1.32 1.46 2.15 3.52 0.07 0.17 0.34 0.66 1.15 1.28 1.88 3.08 0.08 0.19 0.36 0.70 1.24 1.37 2.02 3.30 4.55 5.80…arrow_forwardInput Data: Torque needed to overcome rolling friction in rollers, slides and other moving parts, except for Motor and Worm Gear the worm gear T₁ = Length of travel of door: Time for door to open or close: LD = 50 lb-in. 90 in t= 12.5 seconds Pitch diameter for chain sprocket: DPC 1.690 in Weight of Door: P = No. of worm threads: Nw = Worm Pitch diameter: Dw Diametral pitch: Pd Normal pressure angle: Degrees per Radian: Number of gear teeth: Calculated Data: Linear velocity of door and chain (in/sec): Linear velocity of door and chain (ft/min): Output Speed of Gear and Sprocket: Upward Force due to Weight of Door: Фо = = NG= 240 lb 2 1.250 in 12 14.5 degrees 57.2958 degrees 28 Vα= in/sec VC= ft/min NG = rpm FD lb Net Upward Force on Door: Fou lb Torque on gear ignoring rolling friction: TG = lb-in. Formula = FDU FD-2 x Fo (note: Fo is the Max Operating load of the extension springs). This is also the initial tension in the chain. TG = FDU X DPC/2 This is the also the torque on the…arrow_forwardQ5/A: A car with a track of 1.5 m and a wheelbase of 2.9 m has a steering gear mechanism of the Ackermann type. The distance between the front stub axle pivots is 1.3 m. The length of each track arm is 150 mm, and the length of the track rod is 1.2 m. Find the angle turned through by the outer wheel if the angle turned through by the inner wheel is 30°. (6 Marks) Q5/B: Write True on the correct sentences and False on the wrong sentences listed below:- 1- In automobiles, the power is transmitted from the gearbox to the differential through bevel gears. 2- The minimum radius circle drawn to the cam profile is called the base circle. 3- The Proell governor, compared to the Porter governor, has less lift at the same speed. 4- The balancing of rotating and reciprocating parts of an engine is necessary when it runs at a slow speed. (6.5 Marks) ***Best of Luck *** جامعة بابل UNIVERSITY OF BABYLON Examiner: Mohanad R. Hameed Head of Department: Dr. Dhyai H. Jawadarrow_forward
- University of Babylon Collage of Engineering/ Al-Musayab Department of Automobiles Mid Examination/ Stage: 3rd Subject: Theory of Vehicles Date: 14 \ 4 \2025 Time: 1.5 Hours 2025-2024 Q1: The arms of a Porter governor are 250 mm long. The upper arms are pivoted on the axis of revolution, but the lower arms are attached to a sleeve at a distance of 50 mm from the axis of rotation. The weight on the sleeve is 600 N and the weight of each ball is 80 N. Determine the equilibrium speed when the radius of rotation of the balls is 150 mm. If the friction is equivalent to a load of 25 N at the sleeve, determine the range of speed for this position. Q2: In a loaded Proell governor shown in Figure below each ball weighs 3 kg and the central sleeve weighs 25 kg. The arms are of 200 mm length and pivoted about axis displaced from the central axis of rotation by 38.5 mm, y=238 mm, x=303.5 mm, CE 85 mm, MD 142.5 mm. Determine the equilibrium speed. Fe mg E M 2 Q3: In a spring loaded Hartnell type…arrow_forwardusing the theorem of three moments, find all the reactions and supports, I need the calculations onlyarrow_forwardQ.5: (10 Marks) Select the correct answer (choose 10 only) 1. The forward whirling speed is ......... the static structure tilting speed. (a) Less than (b) Higher than (c) equal to 2. The divergence between the forward and backward whirling speeds increases as: (a) The rotating speed increase (b) the polar moment of inertia increases (c) Both (a) and (b) (d) do not change 3. Increasing the system natural frequency can be done by: (a) add masses (b) adding braces and supports (c) increase damping 4. The amplitude of vibration due to external force can be reduced by: (a) Increasing damping (b) Decreasing damping (c) Increasing mass 5. Tuned absorbers are used to: (a) Shift the natural frequency (b) increase damping (c) Increase stiffness 6. Accelerometers sensors contains: г (a) Piezoelectric materials (b) Magnet and coil (c) coil only 7. Increasing the stiffness of the system causes: (a) Less transmitted force (b) more transmitted force (c) Transmitted force does not change 8. The…arrow_forward
- Q.1: (15 Marks) Find the first three natural frequencies and mode shapes of the axial and torsional vibration for a steel shaft free at both ends, having a length of 3 m. Find the subsequent axil motion if the shaft is subjected to the following initial conditions, given that E = 210 GPa, G=80 GPa, p = 7800 kg/m³: f(x)=0 v(x) = {1 2.8arrow_forwardQ.4: (15 Marks) A uniform rotor of mass 500 kg and diametral moment of inertia of 20 kg.m², is supported by identical short bearings of stiffness 1 MN/m in the horizontal and vertical directions. If the distance between the bearings is 0.6 m: (a) What is the corresponding polar moment of inertia if the backward whirling speed is 80% of the static structure tilting natural frequency? (b) Determine the forward whirling speed. 45.27arrow_forwardUniversity of Babylon Collage of Engineering/ Al-Musayab Department of Automobiles Mid Examination/ Stage: 3rd Subject: Theory of Vehicles Date: 14 \ 4 \2025 Time: 1.5 Hours 2025-2024 Q1: The arms of a Porter governor are 250 mm long. The upper arms are pivoted on the axis of revolution, but the lower arms are attached to a sleeve at a distance of 50 mm from the axis of rotation. The weight on the sleeve is 600 N and the weight of each ball is 80 N. Determine the equilibrium speed when the radius of rotation of the balls is 150 mm. If the friction is equivalent to a load of 25 N at the sleeve, determine the range of speed for this position. Q2: In a loaded Proell governor shown in Figure below each ball weighs 3 kg and the central sleeve weighs 25 kg. The arms are of 200 mm length and pivoted about axis displaced from the central axis of rotation by 38.5 mm, y=238 mm, x=303.5 mm, CE 85 mm, MD 142.5 mm. Determine the equilibrium speed. Fe mg E M 2 Q3: In a spring loaded Hartnell type…arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning

Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license