A function of the form P t = a b t represents the population (in millions) of the given country t years after January 1, 2000. (See Example 4) a. Write an equivalent function using base e; that is, write a function of the form P t = P 0 e k t . Also, determine the population of each country for the year 2000. b. The population of the two given countries is very close for the year 2000, but their growth rates are different. Use the model to approximate the year during which the population of each country reached 5 million. c. Costa Rica had fewer people in the year 2000 than Norway. Why would Costa Rica reach a population of 5 million sooner than Norway?
A function of the form P t = a b t represents the population (in millions) of the given country t years after January 1, 2000. (See Example 4) a. Write an equivalent function using base e; that is, write a function of the form P t = P 0 e k t . Also, determine the population of each country for the year 2000. b. The population of the two given countries is very close for the year 2000, but their growth rates are different. Use the model to approximate the year during which the population of each country reached 5 million. c. Costa Rica had fewer people in the year 2000 than Norway. Why would Costa Rica reach a population of 5 million sooner than Norway?
A function of the form
P
t
=
a
b
t
represents the population (in millions) of the given country t years after January 1, 2000. (See Example 4)
a. Write an equivalent function using base e; that is, write a function of the form
P
t
=
P
0
e
k
t
. Also, determine the population of each country for the year 2000.
b. The population of the two given countries is very close for the year 2000, but their growth rates are different. Use the model to approximate the year during which the population of each country reached 5 million.
c. Costa Rica had fewer people in the year 2000 than Norway. Why would Costa Rica reach a population of 5 million sooner than Norway?
A 20 foot ladder rests on level ground; its head (top) is against a vertical wall. The bottom of the ladder begins by being 12 feet from the wall but begins moving away at the rate of 0.1 feet per second. At what rate is the top of the ladder slipping down the wall? You may use a calculator.
Explain the focus and reasons for establishment of 12.4.1(root test) and 12.4.2(ratio test)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY