Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
9th Edition
ISBN: 9780321962218
Author: Steven J. Leon
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.6, Problem 12E
Let A and B be row equivalent matrices.
(a) Show that the dimension of the column spaceof A equals the dimension of the column spaceof B.
(b) Are the column spaces of the two matrices necessarily the same? Justify your answer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a
Question 7. If det d e f
ghi
V3
= 2. Find det
-1
2
Question 8. Let A = 1
4
5
0
3
2.
1 Find adj (A)
2 Find det (A)
3
Find A-1
2g 2h 2i
-e-f
-d
273
2a 2b 2c
Question 1. Solve the system
-
x1 x2 + 3x3 + 2x4
-x1 + x22x3 + x4
2x12x2+7x3+7x4
Question 2. Consider the system
= 1
=-2
= 1
3x1 - x2 + ax3
= 1
x1 + 3x2 + 2x3
x12x2+2x3
= -b
= 4
1 For what values of a, b will the system be inconsistent?
2 For what values of a, b will the system have only one solution?
For what values of a, b will the saystem have infinitely many solutions?
Question 5. Let A, B, C ben x n-matrices, S is nonsigular. If A = S-1 BS, show that
det (A) = det (B)
Question 6. For what values of k is the matrix A = (2- k
-1
-1
2) singular?
k
Chapter 3 Solutions
Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
Ch. 3.1 - Consider the vectors x1=(8,6)T and x2=(4,1)T in R2...Ch. 3.1 - Repeat Exercise 1 for the vectors x1=(2,1)T and...Ch. 3.1 - LetC be the set of complex numbers. Defineaddition...Ch. 3.1 - Show that mn together with the usual additionand...Ch. 3.1 - Show that C[a,b] , together with the usual...Ch. 3.1 - LetP be the set of all polynomials. Show that P,...Ch. 3.1 - Show that the element 0 in a vector space...Ch. 3.1 - Let x, y, and z be vectors in a vector space V....Ch. 3.1 - Let V be a vector space and let xV . Show that (a)...Ch. 3.1 - Lei S be the set of all ordered pairs of real...
Ch. 3.1 - Let V be the set of all ordered pairs of real...Ch. 3.1 - Let R+ denote the set of positive real numbers....Ch. 3.1 - Let R denote the set of real numbers. Define...Ch. 3.1 - Let Z denote the set of ail integers with addition...Ch. 3.1 - LetS denote the set of all infinite sequences of...Ch. 3.1 - We can define a onetoone correspondence between...Ch. 3.2 - Determine whether the following sets form...Ch. 3.2 - Determine whether the following sets form sub...Ch. 3.2 - Determine whether the following are subspaces of...Ch. 3.2 - Determine the null space of each of the following...Ch. 3.2 - Determine whether the following are subspaces of...Ch. 3.2 - Determine whether the following are subspaces of...Ch. 3.2 - Show that Cn[a,b] is a subspace of C[a,b] .Ch. 3.2 - Let A be a fixed vector in nnandletSbethesetof all...Ch. 3.2 - In each of the following determine the subspace of...Ch. 3.2 - LetA be a particular vector in 22 ....Ch. 3.2 - Determine whether the following are spanning...Ch. 3.2 - Which of the sets that follow are spanning sets...Ch. 3.2 - Given x1=(123),x2=(342) x=(266),y=(925) Is...Ch. 3.2 - Let A be a 43 matrixand let b4 . Howmanypossible...Ch. 3.2 - Let A be a 43 matrixandlet c=2a1+a2+a3 (a) If...Ch. 3.2 - Let x1 be a particular solution to a system Ax=b...Ch. 3.2 - Let {x1,x2,...xk} be a spanning set for a vector...Ch. 3.2 - In 22 , let E11=(1000),E12=(0100)...Ch. 3.2 - Prob. 19ECh. 3.2 - Let S be the vector space of infinite...Ch. 3.2 - Prove that if S is a subspace of 1 , then either...Ch. 3.2 - Let Abe an nn matrix. Prove that the...Ch. 3.2 - Let U and V be subspaces of a vector space W.Prove...Ch. 3.2 - Let S be the subspace of 2 spanned by e1 and letT...Ch. 3.2 - Let U and V be subspaces of a vector space W....Ch. 3.2 - Let S, T, and U be subspaces of a vector space V....Ch. 3.3 - Determine whether the following vectors are...Ch. 3.3 - Determine whether the following vectors are...Ch. 3.3 - For each of the sets of vectors in Exercise 2,...Ch. 3.3 - Determine whether the following vectors are...Ch. 3.3 - Let x1,x2,...,xk be linearly independent vectors...Ch. 3.3 - Let x1,x2 , and x3 be linearly independent vectors...Ch. 3.3 - Let x1,x2 , and x3 be linearly independent vectors...Ch. 3.3 - Determine whether the following vectors are...Ch. 3.3 - Prob. 9ECh. 3.3 - Determine whether the vectors cosx,1 , and...Ch. 3.3 - Consider the vectors cos(x+) and sinx in C[,] ....Ch. 3.3 - Given the functions 2x and |x| , show that (a)...Ch. 3.3 - Prove that any finite set of vectors that contains...Ch. 3.3 - Let v1 and v2 be two vectors in a vector space...Ch. 3.3 - Prove that any nonempty subset of a linearly...Ch. 3.3 - Let Abe an mn matrix. Show that if A has linearly...Ch. 3.3 - Let x1,...,xk be linearly independent vectors in n...Ch. 3.3 - Prob. 18ECh. 3.3 - Prob. 19ECh. 3.3 - Let v1,v2,...,vn be linearly independent vectorsin...Ch. 3.4 - In Exercise 1 of Section 3.3, indicate whether the...Ch. 3.4 - In Exercise 2 of Section 3.3, indicate whether the...Ch. 3.4 - Consider the vectors x1=(21),x2=(43),x3=(73) (a)...Ch. 3.4 - Given the vectors x1=(324),x2=(324),x3=(648) what...Ch. 3.4 - Let x1=(213),x2=(314),x3=(264) (a) Show that x1,x2...Ch. 3.4 - In Exercise 2 of Section 3.2, some of the sets...Ch. 3.4 - Find a basis for the subspace S of 4 consisting of...Ch. 3.4 - Given x1=(1,1,1)T and x2=(3,1,4)T : (a) Do x1 and...Ch. 3.4 - Let a1 and a2 be linearly independent vectors in 3...Ch. 3.4 - The vectors x1=(122) , x2=(254) , x3=(132) ,...Ch. 3.4 - Let S be the subspace of P3 consisting of all...Ch. 3.4 - In Exercise 3 of Section 3.2, some of the sets...Ch. 3.4 - In C[,] , find the dimension of the...Ch. 3.4 - In each of the following, find the dimension of...Ch. 3.4 - LetS be the subspace of P3 consisting of all...Ch. 3.4 - In 4 let U be the subspace of all vectors of the...Ch. 3.4 - Is it possible to find a pair of twodimensional...Ch. 3.4 - Show that if U and V are subspaces of n and UV=0 ,...Ch. 3.5 - For each of the following, find the transition...Ch. 3.5 - For each of the ordered bases u1,u2 in Exercise 1,...Ch. 3.5 - Let v1(3,2)T and v2(4,3)T . For each orderedbasis...Ch. 3.5 - Let E=[(5,3)T,(3,2)T] and let x=(1,1)T , y=(1,1)T...Ch. 3.5 - Let u1=(1,1,1)T,u2=(1,2,2)T , and u3=(2,3,4)T (a)...Ch. 3.5 - Let v1=(4,6,7)T,v2=(0,1,1)T , and v3=(0,1,2)T ,...Ch. 3.5 - Given v1=(12) , v2=(23) , S=(351 2) find vectors...Ch. 3.5 - Given v1=(26) , v2=(14) , S=(4121) find vectors u1...Ch. 3.5 - Let [x,1] and [2x1,2x+1] beorderedbasesfor P2 ....Ch. 3.5 - Find the transition matrix representing the...Ch. 3.5 - Let E={u1,...,un} and F={v1,...,vn} be two ordered...Ch. 3.6 - For each of the following matrices, find a basis...Ch. 3.6 - In each of the following, determine the dimension...Ch. 3.6 - Let A=(122314245549367859) (a) Compute the reduced...Ch. 3.6 - For each of the following choices of A and b,...Ch. 3.6 - For each consistent system in Exercise 4,...Ch. 3.6 - How many solutions will the linear system Ax=b...Ch. 3.6 - Let A be a 6n matrix of rank r and let b be a...Ch. 3.6 - Let Abe an mn matrix with mn . Let bRm and suppose...Ch. 3.6 - Let A and B be 65 matrices. If dimN(A)=2 ,what is...Ch. 3.6 - Let A be an mn matrix whose rank is equal to n. If...Ch. 3.6 - Let A be an mn matrix. Prove that rank(A)min(m,n)Ch. 3.6 - Let A and B be row equivalent matrices. (a) Show...Ch. 3.6 - Let A be a 43 matrixandsupposethatthevectors...Ch. 3.6 - Let A be a 44 matrix with reduced row echelonform...Ch. 3.6 - Let A be a 45 matrix and let U be the reduced row...Ch. 3.6 - Let A be a 58 matrix with rank equal to 5 and let...Ch. 3.6 - LetA bea 45 matrix, If a1,a2 , and a4 are...Ch. 3.6 - Let A be a 53 matrix of rank 3 and let {x1,x2,x3}...Ch. 3.6 - Let A be an mnmatrixwithrankequalton.Showthat if...Ch. 3.6 - Prove that a linear system Ax=b is consistent...Ch. 3.6 - LetAandBbemn matrices.Showthat...Ch. 3.6 - Let Abeanmn matrix. (a) Show that if B is a...Ch. 3.6 - Prove Corollary 3.6.4.Ch. 3.6 - Show that if A and B are nn matrices and N(AB)=n...Ch. 3.6 - Prob. 25ECh. 3.6 - Prob. 26ECh. 3.6 - Let x and y be nonzero vectors in m and n ,...Ch. 3.6 - Prob. 28ECh. 3.6 - Let Amn , Bnr , and C=AB . Show that (a) ifA and B...Ch. 3.6 - Prob. 30ECh. 3.6 - An mn matrix A is said to have a right inverse if...Ch. 3.6 - Prove: If A is an mn matrix and the column vectors...Ch. 3.6 - Show that a matrix B has a left inverse if and...Ch. 3.6 - Let B be an nm matrix whose columns arelinearly...Ch. 3.6 - Prob. 35ECh. 3.6 - Prob. 36ECh. 3 - (Change of Basis) Set U=round(20rand(4))10 ,...Ch. 3 - (RankDeficient Matrices) In this exercise we...Ch. 3 - (Column Space arid Reduced Row Echelon Form) Set...Ch. 3 - (Rank1 Updates of Linear Systems) (a) Set...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Prob. 5CTACh. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Prob. 10CTACh. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Prob. 14CTACh. 3 - Prob. 15CTACh. 3 - In 3 , let x1 and x2 be linearly independent...Ch. 3 - For each set that follows determine whether it is...Ch. 3 - Let A=(13134001110022200333) (a) Find a basis for...Ch. 3 - How do the dimensions of the null space and column...Ch. 3 - Answer the following questions and, in each case,...Ch. 3 - Let S be the set of all symmetric 22 matrices with...Ch. 3 - Let A be a 64 matrix of rank 4. (a) What is the...Ch. 3 - Given the vectors x1=(122),x2=(133) ,...Ch. 3 - Let x1,x2 and x3 be linearly independent vectors...Ch. 3 - Let A be a 65 matrix with linearly independent...Ch. 3 - Let {u1,u2} and {v1,v2} be ordered bases for 2 ,...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Find all solutions of each equation in the interval .
Precalculus: A Unit Circle Approach (3rd Edition)
The largest polynomial that divides evenly into a list of polynomials is called the _______.
Elementary & Intermediate Algebra
23. A plant nursery sells two sizes of oak trees to landscapers. Large trees cost the nursery $120 from the gro...
College Algebra (Collegiate Math)
(a) Make a stem-and-leaf plot for these 24 observations on the number of customers who used a down-town CitiBan...
APPLIED STAT.IN BUS.+ECONOMICS
Find E(X) for each of the distributions given in Exercise 2.1-3.
Probability And Statistical Inference (10th Edition)
First Derivative Test a. Locale the critical points of f. b. Use the First Derivative Test to locale the local ...
Calculus: Early Transcendentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 1 4 5 Question 3. Find A-1 (if exists), where A = -3 -1 -2 2 3 4 Question 4. State 4 equivalent conditions for a matrix A to be nonsingulararrow_forwardHow long is a guy wire reaching from the top of a 15-foot pole to a point on the ground 9-feet from the pole? Question content area bottom Part 1 The guy wire is exactly feet long. (Type an exact answer, using radicals as needed.) Part 2 The guy wire is approximatelyfeet long. (Round to the nearest thousandth.)arrow_forwardQuestion 6 Not yet answered Marked out of 5.00 Flag question = If (4,6,-11) and (-12,-16,4), = Compute the cross product vx w karrow_forward
- Consider the following vector field v^-> (x,y): v^->(x,y)=2yi−xj What is the magnitude of the vector v⃗ located in point (13,9)? [Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places]arrow_forwardQuestion 4 Find the value of the first element for the first row of the inverse matrix of matrix B. 3 Not yet answered B = Marked out of 5.00 · (³ ;) Flag question 7 [Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places] Answer:arrow_forwardQuestion 2 Not yet answered Multiply the following Matrices together: [77-4 A = 36 Marked out of -5 -5 5.00 B = 3 5 Flag question -6 -7 ABarrow_forward
- Assume {u1, U2, u3, u4} does not span R³. Select the best statement. A. {u1, U2, u3} spans R³ if u̸4 is a linear combination of other vectors in the set. B. We do not have sufficient information to determine whether {u₁, u2, u3} spans R³. C. {U1, U2, u3} spans R³ if u̸4 is a scalar multiple of another vector in the set. D. {u1, U2, u3} cannot span R³. E. {U1, U2, u3} spans R³ if u̸4 is the zero vector. F. none of the abovearrow_forwardSelect the best statement. A. If a set of vectors includes the zero vector 0, then the set of vectors can span R^ as long as the other vectors are distinct. n B. If a set of vectors includes the zero vector 0, then the set of vectors spans R precisely when the set with 0 excluded spans Rª. ○ C. If a set of vectors includes the zero vector 0, then the set of vectors can span Rn as long as it contains n vectors. ○ D. If a set of vectors includes the zero vector 0, then there is no reasonable way to determine if the set of vectors spans Rn. E. If a set of vectors includes the zero vector 0, then the set of vectors cannot span Rn. F. none of the abovearrow_forwardWhich of the following sets of vectors are linearly independent? (Check the boxes for linearly independent sets.) ☐ A. { 7 4 3 13 -9 8 -17 7 ☐ B. 0 -8 3 ☐ C. 0 ☐ D. -5 ☐ E. 3 ☐ F. 4 THarrow_forward
- 3 and = 5 3 ---8--8--8 Let = 3 U2 = 1 Select all of the vectors that are in the span of {u₁, u2, u3}. (Check every statement that is correct.) 3 ☐ A. The vector 3 is in the span. -1 3 ☐ B. The vector -5 75°1 is in the span. ГОЛ ☐ C. The vector 0 is in the span. 3 -4 is in the span. OD. The vector 0 3 ☐ E. All vectors in R³ are in the span. 3 F. The vector 9 -4 5 3 is in the span. 0 ☐ G. We cannot tell which vectors are i the span.arrow_forward(20 p) 1. Find a particular solution satisfying the given initial conditions for the third-order homogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y(3)+2y"-y-2y = 0; y(0) = 1, y'(0) = 2, y"(0) = 0; y₁ = e*, y2 = e¯x, y3 = e−2x (20 p) 2. Find a particular solution satisfying the given initial conditions for the second-order nonhomogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y"-2y-3y = 6; y(0) = 3, y'(0) = 11 yc = c₁ex + c2e³x; yp = −2 (60 p) 3. Find the general, and if possible, particular solutions of the linear systems of differential equations given below using the eigenvalue-eigenvector method. (See Section 7.3 in your textbook if you need a review of the subject.) = a) x 4x1 + x2, x2 = 6x1-x2 b) x=6x17x2, x2 = x1-2x2 c) x = 9x1+5x2, x2 = −6x1-2x2; x1(0) = 1, x2(0)=0arrow_forwardFind the perimeter and areaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY