Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
9th Edition
ISBN: 9780321962218
Author: Steven J. Leon
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 2E

(Rank−Deficient Matrices) In this exercise we consider how to use MATLAB to generate matrices with specified ranks.

  1. In general, if A is an in x n matrix with rank r, then r min ( m , n ) . Why? Explain. If the entries of A are random numbers, we would expect that r = min ( m , n ) . Why? Explain. Check this out by generating random 6 × 6 , 8 × 6 , and 5 × 8 matrices and using the MATLAB command rank to compute their ranks. Whenever the rank of an m × n matrix equals min ( m , n ) , we say that the matrix has full rank. Otherwise, we say that the matrix is rank deficient.
  2. MATLAB’s rand and round commands can be used to generate random m × n matrices with integer entries in a given range [ a , b ] . This can be done with a command of the form A = round ( ( b a ) rand ( m , n ) ) + a
    For example, the command
    A = round ( 4 rand ( 6 , 8 ) ) + 3
    will generate a 6 × 8 matrix whose entries are random integers in the range from 3 to 7. Using the range [ 1 , 10 ] , create random integer 10 × 7 , 8 × 12 ,and 10 × 15 matrices and in each case check the rank of the matrix. Do these integer matrices all have full rank?
  3. Suppose that we want to use MATLAB to generate matrices with less than full rank. It is easy to generate matrices of rank 1. If x and y are nonzero vectors in m and n , respectively, then A = xy T will be an m × n matrix with rank 1. Why? Explain. Verify this in MATLAB by setting
    x = round ( 9 rand ( 8 , 1 ) ) + 1 ,
    y = round ( 9 rand ( 6 , 1 ) ) + 1
    and using these vectors to construct an 8 × 6 matrix A. Check the rank of A with the MATLAB command rank.
  4. In general,
    rank ( A B ) min ( rank ( B ) ) (1)
  5. (See Exercise 28 in Section 3.6.) If A andB are noninteger random matrices, the relation (1) should be an equality. Generate an 8 × 6 matrix A by setting
    X = rand ( 8 , 2 ) , Y = rand ( 6 , 2 ) ,
    A = X Y
    What would you expect the rank of A to be? Explain. Test the rank of A with MATLAB.
  6. Use MATLAB to generate matrices A, B, and C such that
  7. (i) A is 8 × 8 with rank 3.
    (ii) B is 6 × 9 with rank 4.
    (iii) C is 10 × 7 with rank 5.

Blurred answer
Students have asked these similar questions
Co Given show that Solution Take home Су-15 1994 +19 09/2 4 =a log суто - 1092 ж = a-1 2+1+8 AI | SHOT ON S4 INFINIX CAMERA
a Question 7. If det d e f ghi V3 = 2. Find det -1 2 Question 8. Let A = 1 4 5 0 3 2. 1 Find adj (A) 2 Find det (A) 3 Find A-1 2g 2h 2i -e-f -d 273 2a 2b 2c
Question 1. Solve the system - x1 x2 + 3x3 + 2x4 -x1 + x22x3 + x4 2x12x2+7x3+7x4 Question 2. Consider the system = 1 =-2 = 1 3x1 - x2 + ax3 = 1 x1 + 3x2 + 2x3 x12x2+2x3 = -b = 4 1 For what values of a, b will the system be inconsistent? 2 For what values of a, b will the system have only one solution? For what values of a, b will the saystem have infinitely many solutions?

Chapter 3 Solutions

Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))

Ch. 3.1 - Let V be the set of all ordered pairs of real...Ch. 3.1 - Let R+ denote the set of positive real numbers....Ch. 3.1 - Let R denote the set of real numbers. Define...Ch. 3.1 - Let Z denote the set of ail integers with addition...Ch. 3.1 - LetS denote the set of all infinite sequences of...Ch. 3.1 - We can define a onetoone correspondence between...Ch. 3.2 - Determine whether the following sets form...Ch. 3.2 - Determine whether the following sets form sub...Ch. 3.2 - Determine whether the following are subspaces of...Ch. 3.2 - Determine the null space of each of the following...Ch. 3.2 - Determine whether the following are subspaces of...Ch. 3.2 - Determine whether the following are subspaces of...Ch. 3.2 - Show that Cn[a,b] is a subspace of C[a,b] .Ch. 3.2 - Let A be a fixed vector in nnandletSbethesetof all...Ch. 3.2 - In each of the following determine the subspace of...Ch. 3.2 - LetA be a particular vector in 22 ....Ch. 3.2 - Determine whether the following are spanning...Ch. 3.2 - Which of the sets that follow are spanning sets...Ch. 3.2 - Given x1=(123),x2=(342) x=(266),y=(925) Is...Ch. 3.2 - Let A be a 43 matrixand let b4 . Howmanypossible...Ch. 3.2 - Let A be a 43 matrixandlet c=2a1+a2+a3 (a) If...Ch. 3.2 - Let x1 be a particular solution to a system Ax=b...Ch. 3.2 - Let {x1,x2,...xk} be a spanning set for a vector...Ch. 3.2 - In 22 , let E11=(1000),E12=(0100)...Ch. 3.2 - Prob. 19ECh. 3.2 - Let S be the vector space of infinite...Ch. 3.2 - Prove that if S is a subspace of 1 , then either...Ch. 3.2 - Let Abe an nn matrix. Prove that the...Ch. 3.2 - Let U and V be subspaces of a vector space W.Prove...Ch. 3.2 - Let S be the subspace of 2 spanned by e1 and letT...Ch. 3.2 - Let U and V be subspaces of a vector space W....Ch. 3.2 - Let S, T, and U be subspaces of a vector space V....Ch. 3.3 - Determine whether the following vectors are...Ch. 3.3 - Determine whether the following vectors are...Ch. 3.3 - For each of the sets of vectors in Exercise 2,...Ch. 3.3 - Determine whether the following vectors are...Ch. 3.3 - Let x1,x2,...,xk be linearly independent vectors...Ch. 3.3 - Let x1,x2 , and x3 be linearly independent vectors...Ch. 3.3 - Let x1,x2 , and x3 be linearly independent vectors...Ch. 3.3 - Determine whether the following vectors are...Ch. 3.3 - Prob. 9ECh. 3.3 - Determine whether the vectors cosx,1 , and...Ch. 3.3 - Consider the vectors cos(x+) and sinx in C[,] ....Ch. 3.3 - Given the functions 2x and |x| , show that (a)...Ch. 3.3 - Prove that any finite set of vectors that contains...Ch. 3.3 - Let v1 and v2 be two vectors in a vector space...Ch. 3.3 - Prove that any nonempty subset of a linearly...Ch. 3.3 - Let Abe an mn matrix. Show that if A has linearly...Ch. 3.3 - Let x1,...,xk be linearly independent vectors in n...Ch. 3.3 - Prob. 18ECh. 3.3 - Prob. 19ECh. 3.3 - Let v1,v2,...,vn be linearly independent vectorsin...Ch. 3.4 - In Exercise 1 of Section 3.3, indicate whether the...Ch. 3.4 - In Exercise 2 of Section 3.3, indicate whether the...Ch. 3.4 - Consider the vectors x1=(21),x2=(43),x3=(73) (a)...Ch. 3.4 - Given the vectors x1=(324),x2=(324),x3=(648) what...Ch. 3.4 - Let x1=(213),x2=(314),x3=(264) (a) Show that x1,x2...Ch. 3.4 - In Exercise 2 of Section 3.2, some of the sets...Ch. 3.4 - Find a basis for the subspace S of 4 consisting of...Ch. 3.4 - Given x1=(1,1,1)T and x2=(3,1,4)T : (a) Do x1 and...Ch. 3.4 - Let a1 and a2 be linearly independent vectors in 3...Ch. 3.4 - The vectors x1=(122) , x2=(254) , x3=(132) ,...Ch. 3.4 - Let S be the subspace of P3 consisting of all...Ch. 3.4 - In Exercise 3 of Section 3.2, some of the sets...Ch. 3.4 - In C[,] , find the dimension of the...Ch. 3.4 - In each of the following, find the dimension of...Ch. 3.4 - LetS be the subspace of P3 consisting of all...Ch. 3.4 - In 4 let U be the subspace of all vectors of the...Ch. 3.4 - Is it possible to find a pair of twodimensional...Ch. 3.4 - Show that if U and V are subspaces of n and UV=0 ,...Ch. 3.5 - For each of the following, find the transition...Ch. 3.5 - For each of the ordered bases u1,u2 in Exercise 1,...Ch. 3.5 - Let v1(3,2)T and v2(4,3)T . For each orderedbasis...Ch. 3.5 - Let E=[(5,3)T,(3,2)T] and let x=(1,1)T , y=(1,1)T...Ch. 3.5 - Let u1=(1,1,1)T,u2=(1,2,2)T , and u3=(2,3,4)T (a)...Ch. 3.5 - Let v1=(4,6,7)T,v2=(0,1,1)T , and v3=(0,1,2)T ,...Ch. 3.5 - Given v1=(12) , v2=(23) , S=(351 2) find vectors...Ch. 3.5 - Given v1=(26) , v2=(14) , S=(4121) find vectors u1...Ch. 3.5 - Let [x,1] and [2x1,2x+1] beorderedbasesfor P2 ....Ch. 3.5 - Find the transition matrix representing the...Ch. 3.5 - Let E={u1,...,un} and F={v1,...,vn} be two ordered...Ch. 3.6 - For each of the following matrices, find a basis...Ch. 3.6 - In each of the following, determine the dimension...Ch. 3.6 - Let A=(122314245549367859) (a) Compute the reduced...Ch. 3.6 - For each of the following choices of A and b,...Ch. 3.6 - For each consistent system in Exercise 4,...Ch. 3.6 - How many solutions will the linear system Ax=b...Ch. 3.6 - Let A be a 6n matrix of rank r and let b be a...Ch. 3.6 - Let Abe an mn matrix with mn . Let bRm and suppose...Ch. 3.6 - Let A and B be 65 matrices. If dimN(A)=2 ,what is...Ch. 3.6 - Let A be an mn matrix whose rank is equal to n. If...Ch. 3.6 - Let A be an mn matrix. Prove that rank(A)min(m,n)Ch. 3.6 - Let A and B be row equivalent matrices. (a) Show...Ch. 3.6 - Let A be a 43 matrixandsupposethatthevectors...Ch. 3.6 - Let A be a 44 matrix with reduced row echelonform...Ch. 3.6 - Let A be a 45 matrix and let U be the reduced row...Ch. 3.6 - Let A be a 58 matrix with rank equal to 5 and let...Ch. 3.6 - LetA bea 45 matrix, If a1,a2 , and a4 are...Ch. 3.6 - Let A be a 53 matrix of rank 3 and let {x1,x2,x3}...Ch. 3.6 - Let A be an mnmatrixwithrankequalton.Showthat if...Ch. 3.6 - Prove that a linear system Ax=b is consistent...Ch. 3.6 - LetAandBbemn matrices.Showthat...Ch. 3.6 - Let Abeanmn matrix. (a) Show that if B is a...Ch. 3.6 - Prove Corollary 3.6.4.Ch. 3.6 - Show that if A and B are nn matrices and N(AB)=n...Ch. 3.6 - Prob. 25ECh. 3.6 - Prob. 26ECh. 3.6 - Let x and y be nonzero vectors in m and n ,...Ch. 3.6 - Prob. 28ECh. 3.6 - Let Amn , Bnr , and C=AB . Show that (a) ifA and B...Ch. 3.6 - Prob. 30ECh. 3.6 - An mn matrix A is said to have a right inverse if...Ch. 3.6 - Prove: If A is an mn matrix and the column vectors...Ch. 3.6 - Show that a matrix B has a left inverse if and...Ch. 3.6 - Let B be an nm matrix whose columns arelinearly...Ch. 3.6 - Prob. 35ECh. 3.6 - Prob. 36ECh. 3 - (Change of Basis) Set U=round(20rand(4))10 ,...Ch. 3 - (RankDeficient Matrices) In this exercise we...Ch. 3 - (Column Space arid Reduced Row Echelon Form) Set...Ch. 3 - (Rank1 Updates of Linear Systems) (a) Set...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Prob. 5CTACh. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Prob. 10CTACh. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Answer each of the statements that follows as true...Ch. 3 - Prob. 14CTACh. 3 - Prob. 15CTACh. 3 - In 3 , let x1 and x2 be linearly independent...Ch. 3 - For each set that follows determine whether it is...Ch. 3 - Let A=(13134001110022200333) (a) Find a basis for...Ch. 3 - How do the dimensions of the null space and column...Ch. 3 - Answer the following questions and, in each case,...Ch. 3 - Let S be the set of all symmetric 22 matrices with...Ch. 3 - Let A be a 64 matrix of rank 4. (a) What is the...Ch. 3 - Given the vectors x1=(122),x2=(133) ,...Ch. 3 - Let x1,x2 and x3 be linearly independent vectors...Ch. 3 - Let A be a 65 matrix with linearly independent...Ch. 3 - Let {u1,u2} and {v1,v2} be ordered bases for 2 ,...
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Text book image
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
HOW TO FIND DETERMINANT OF 2X2 & 3X3 MATRICES?/MATRICES AND DETERMINANTS CLASS XII 12 CBSE; Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=bnaKGsLYJvQ;License: Standard YouTube License, CC-BY
What are Determinants? Mathematics; Author: Edmerls;https://www.youtube.com/watch?v=v4_dxD4jpgM;License: Standard YouTube License, CC-BY