Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 8EAP
What is the aperture diameter of a 12-mm-focal-length lens set to f/4.0?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A camera lens has a focal length of 35.0 mm. its f-stop setting range from f-1.4 to f-22. What is the
maximum diameter of the aperture?
Two converging lenses with focal lengths of 20 cm and 24 cm are combined to make a single lens. What is the focal length of the combination?
A lens has a focal length of 48 cm and a diameter of 10.00 cm. What is the f-number of the lens?
Chapter 35 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 35 - Prob. 1CQCh. 35 - Prob. 2CQCh. 35 - Prob. 3CQCh. 35 - Prob. 4CQCh. 35 - Prob. 5CQCh. 35 - Prob. 6CQCh. 35 - Prob. 7CQCh. 35 - To focus parallel light rays to the smallest...Ch. 35 - Prob. 9CQCh. 35 - Two converging lenses with focal lengths of 40 cm...
Ch. 35 - Prob. 2EAPCh. 35 - Prob. 3EAPCh. 35 - Prob. 4EAPCh. 35 - Prob. 5EAPCh. 35 - A 2.0-rn-tall man is 10 m in front of a camera...Ch. 35 - What is the f-number of a lens with a 35 mm focal...Ch. 35 - What is the aperture diameter of a...Ch. 35 - A camera takes a properly exposed photo at f/5.6...Ch. 35 - A camera takes a properly exposed photo with a...Ch. 35 - Ramon has contact lenses with the prescription...Ch. 35 - Ellen wears eyeglasses with the prescription -1.0...Ch. 35 - 13. What is the f-number of a relaxed eye with the...Ch. 35 - Prob. 14EAPCh. 35 - Prob. 15EAPCh. 35 - Prob. 16EAPCh. 35 - Prob. 17EAPCh. 35 - A 20 telescope has a 12-cm-diameter objective...Ch. 35 - Prob. 19EAPCh. 35 - Prob. 20EAPCh. 35 - Prob. 21EAPCh. 35 - Prob. 22EAPCh. 35 - Prob. 23EAPCh. 35 - A scientist needs to focus a helium-neon laser...Ch. 35 - Prob. 25EAPCh. 35 - Prob. 26EAPCh. 35 - Prob. 27EAPCh. 35 - Prob. 28EAPCh. 35 - Prob. 29EAPCh. 35 - Prob. 30EAPCh. 35 - Prob. 31EAPCh. 35 - Prob. 32EAPCh. 35 - Prob. 33EAPCh. 35 - Prob. 34EAPCh. 35 - Prob. 35EAPCh. 35 - Prob. 36EAPCh. 35 - 37. You’ve been asked Lo build a telescope from a...Ch. 35 - Prob. 38EAPCh. 35 - Prob. 39EAPCh. 35 - Prob. 40EAPCh. 35 - Prob. 41EAPCh. 35 - Prob. 42EAPCh. 35 - Prob. 43EAPCh. 35 - Prob. 44EAPCh. 35 - Prob. 45EAPCh. 35 - Prob. 46EAPCh. 35 - Alpha Centauri, the nearest star to our solar...Ch. 35 - Prob. 48EAPCh. 35 - Prob. 49EAPCh. 35 - Prob. 50EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forwardWhat is the magnification of a magnifying lens with a focal length of 10 cm if it is held 3.0 cm from the eye and the object is 12 cm from the eye?arrow_forwardWhat will be the angular magnification of a convex lens with the focal length 2.5 cm?arrow_forward
- What range of magnification is possible with a 7.0 cm-focal length converging lens?arrow_forwardYou view an object by holding a 2.5 cm-focal length magnifying glass 10 cm away from it. How far from your eye should you hold the magnifying glass to obtain a magnification of 10 ?arrow_forwardA lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forward
- A 7.5 binocular produces an angular magnification of —7.50, acting like a telescope. (Mirrors are used to make the image upright.) If the binoculars have objective lenses with a 75.0-cm focal length, what is the focal length of the eyepiece lenses?arrow_forwardIn Figure P26.38, a thin converging lens of focal length 14.0 cm forms an image of the square abcd, which is hc = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c, and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P26.38arrow_forwardUnder what circumstances will an image be located at the focal point of a spherical lens or mirror?arrow_forward
- Show that the magnification of a thin lens is given by M = di/do (Eq. 38.6). Hint: Follow the derivation of the lens makers equation (page 1233) and start with a thick lens.arrow_forwardA group of students is given two converging lenses. Lens A has a focal length of 12.5 cm, and lens B has a focal length of 50.0 cm. The diameter of each lens is 6.50 cm. The students are asked to construct a microscope from these lenses that has the same magnification as the telescope in Problem 80 if possible, and they have this discussion: Avi: These are the same lenses we used to make a telescope. So they wont work as a microscope. Microscopes are for looking at close objects; telescopes are for looking at far objects. Cameron: All you need for a microscope are two converging lenses. I think the difference from a telescope is just that the order of the lenses is switched. A microscope is just a backward telescope. Shannon: I think the order of the lenses doesnt matter because the magnification is inversely proportional to both focal lengths. I think we have to adjust the distance between the lenses. a. What do you think? b. If a microscope can be constructed with these two lenses, describe its design. What is the minimum separation of the lenses? Where must you place the object?arrow_forwardGive three advantages that the Fresnel lens design has over that of a conventional lens with the same size and focal length.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY