CP A thin uniform film of refractive index 1.750 is placed on a sheet of glass of refractive index 1.50. At room temperature (20.0°C), this film is just thick enough for light with wavelength 582.4 nm reflected off the top of the film to be cancelled by light reflected from the top of the glass. After the glass is placed in an oven and slowly heated to 170°C, you find that the film cancels reflected light with wavelength 588.5 nm. What is the coefficient of linear expansion of the film? (Ignore any changes in the refractive index of the film due to the temperature change.)
CP A thin uniform film of refractive index 1.750 is placed on a sheet of glass of refractive index 1.50. At room temperature (20.0°C), this film is just thick enough for light with wavelength 582.4 nm reflected off the top of the film to be cancelled by light reflected from the top of the glass. After the glass is placed in an oven and slowly heated to 170°C, you find that the film cancels reflected light with wavelength 588.5 nm. What is the coefficient of linear expansion of the film? (Ignore any changes in the refractive index of the film due to the temperature change.)
CP A thin uniform film of refractive index 1.750 is placed on a sheet of glass of refractive index 1.50. At room temperature (20.0°C), this film is just thick enough for light with wavelength 582.4 nm reflected off the top of the film to be cancelled by light reflected from the top of the glass. After the glass is placed in an oven and slowly heated to 170°C, you find that the film cancels reflected light with wavelength 588.5 nm. What is the coefficient of linear expansion of the film? (Ignore any changes in the refractive index of the film due to the temperature change.)
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…
How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.
Hello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig?
Thanks!
Chapter 35 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.