Concept explainers
Two radio antennas
Figure P35.43
Want to see the full answer?
Check out a sample textbook solutionChapter 35 Solutions
University Physics (14th Edition)
Additional Science Textbook Solutions
The Cosmic Perspective Fundamentals (2nd Edition)
Conceptual Integrated Science
Essential University Physics: Volume 2 (3rd Edition)
Essential University Physics (3rd Edition)
College Physics
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- Two antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle. What is the phase difference between the waves arriving at P from antennas A and B? Enter your answer in radiansarrow_forwardWhen coherent electromagnetic waves with wavelength l = 120 mm are incident on a single slit of width a, the width of the central maximum on a tall screen 1.50 m from the slit is 90.0 cm. For the same slit and screen, for what wavelength of the incident waves is the width of the central maximum 180.0 cm, double the value when l = 120 mm?arrow_forwardTwo radio antennas radiating in phase are positioned at points A and B, separated by a distance of 200 m (Figure P35.43). Radio waves have a frequency of 5.80 MHz. A radio receiver is moved from point B along a line perpendicular to the line connecting A to B (line BC in the figure)At what distances B will there be destructive interference?Note: The distance between the receiver and the sources is not great compared to the separation of the sources.arrow_forward
- Short-wave radio antennas A and B are connected to the same transmitter and emit coherent waves in phase and with the same frequency f. You must determine the value of f and the placement of the antennas that produce a maximum intensity through constructive interference at a receiving antenna that is located at point P, which is at the corner of your garage. First you place antenna A at a point 240.0 m due east of P. Next you place antenna B on the line that connects A and P, a distance x due east of P, where x < 240.0 m. Then you measure that a maximum in the total intensity from the two antennas occurs when x = 210.0 m, 216.0 m, and 222.0 m. You don’t investigate smaller or larger values of x. (Treat the antennas as point sources.) (a) What is the frequency f of the waves that are emitted by the antennas? (b) What is the greatest value of x, with x < 240.0 m, for which the interference at P is destructive?arrow_forwardMonochromatic electromagnetic radiation with wavelength l from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 µm, what is the slit width a if the wavelength is (a) 500 nm (visible light); (b) 50.0 µm (infrared radiation); (c) 0.500 nm (x rays)?arrow_forwardThe GPS (Global Positioning System) satellites are approximately 5.18 m across and transmit two low-power signals, one of which is at 1575.42 MHz (in the UHF band). In a series of laboratory tests on the satellite, you put two 1575.42 MHz UHF transmitters at opposite ends of the satellite. These broadcast in phase uniformly in all directions. You measure the intensity at points on a circle that is several hundred meters in radius and centered on the satellite. You measure angles on this circle relative to a point that lies along the centerline of the satellite (that is, the perpendicular bisector of a line which extends from one transmitter to the other). At this point on the circle, the measured intensity is 2.00 W/m². At how many other angles in the range 0° < 0 < 90° is the intensity also 2.00 W/m²? Express your answer as an integer. N = Submit Part B 0 = Submit 2 Find the four smallest (positive) angles in the range 0° < 0 < 90° for which the intensity is 2.00 W/m². Express your…arrow_forward
- The GPS (Global Positioning System) satellites are approximately 5.18 m across and transmit two low-power signals, one of which is at 1575.42 MHz (in the UHF band). In a series of laboratory tests on the satellite, you put two 1575.42 MHz UHF transmitters at opposite ends of the satellite. These broadcast in phase uniformly in all directions. You measure the intensity at points on a circle that is several hundred meters in radius and centered on the satellite. You measure angles on this circle relative to a point that lies along the centerline of the satellite (that is, the perpendicular bisector of a line that extends from one transmitter to the other). At this point on the circle, the measured intensity is 2.00 W/m2 . (a) At how many other angles in the range 0° < θ < 90° is the intensity also 2.00 W/m2 ? (b) Find the four smallest angles in the range 0° < θ < 90° for which the intensity is 2.00 W/m2 . (c) What is the intensity at a point on the circle at an angle of…arrow_forwardA receiver located in front of a sheer cliff as shown in the figure picks up interfering signals from a nearby 265 kHz transmitter. One signal travels directly from the transmitting antenna to the receiver, and the other first travels to and bounces off the cliff. (a) What is the wavelength of the signal? λ = [ km (b) For what minimum possible distance between the cliff and the receiver will the two waves interfere constructively at the receiver? km (c) For what minimum possible distance between the cliff and the receiver will the two waves interfere destructively at the receiver? km Transmitting Cliff Receiver antenna Use c = 2.998 x 108 m/s.arrow_forwardTwo identical sources A and B emit in-phase plane radio waves with frequency 7.84E4 Hz and intensity 1.78E2 W/m2. A detector placed at location P closer to source B than source A detects a destructive interference. What is the intensity of the wave detected by the detector (in W/m2)?arrow_forward
- Why is the following situation impossible? Two narrow slits are separated by 8.00 mm in a piece of metal. A beam of microwaves strikes the metal perpendicularly, passes through the two slits, and then proceeds toward a wall some distance away. You know that the wavelength of the radiationis 1.00 cm ±5%, but you wish to measure it more precisely. Moving a microwave detector along the wall to study the interference pattern, you measure the position of the m = 1 bright fringe, which leads to a successful measurement of the wavelength of the radiation.arrow_forwardIn an experiment to demonstrate interference, you connect two antennas to a single radio receiver. When the two antennas are adjacent to each other, the received signal is strong. You leave one antenna in place and move the other one directly away from the radio transmission tower. How far should the second antenna be moved in order to receive a minimum signal from a station that broadcasts at 103.4 MHz?arrow_forwardTwo sources are emitting coherent, monochromatic EM waves with a wavelength of 2 cm in air. Source 1 is embedded in a material with index of refraction n1 = 1.5. The distance between source 1 and the edge of the material is 6 cm. You can assume nair = 1. At the point marked with an X, which is 9 cm from source 2 and 3 cm from the edge of the material that source 1 is embedded inside, what kind of interference will you find between EM waves from the two sources? Group of answer choices Destructive Constructivearrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON