University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 35.29E
The walls of a soap bubble have about the same index of refraction as that of plain water, n = 1.33. There is air both inside and outside the bubble. (a) What wavelength (in air) of visible light is most strongly reflected from a point on a soap bubble where its wall is 290 nm thick? To what color does this correspond (see Fig. 32.4 and Table 32.1)? (b) Repeat part (a) for a wall thickness of 340 nm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A beam of light is incident at 30° on a piece of glass in
air. The dispersion of colors spans 1 mm on the bottom
surface of the glass. The thickness of the glass slab is l =
10 cm. The index of refraction for red light is nred =
1.513. Given nviolet > nred· Determine the index of
refraction for violet light.
30
1 mm
1.546
O 1.587
1.563
1.553
1.572
O 1.591
A thin layer of oil with index of refraction no = 1.47 is floating above the water. The index of refraction of water is nw = 1.3. The index of refraction of air is na = 1. A light with wavelength λ = 325 nm goes in from the air to oil and water.
Part (a) Express the wavelength of the light in the oil, λo, in terms of λ and no.
Part (b) Express the minimum thickness of the film that will result in destructive interference, tmin, in terms of λo. Part (c) Express tmin in terms of λ and no. Part (d) Solve for the numerical value of tmin in nm.
The index of refraction of diamond is 2.42. By definition, this means that a given wavelength of light
travels:
O 2.42 times faster in air than it does in diamond
O 2.42 times faster in a vacuum than it does in diamond
2.42 times faster in diamond than it does in a vacuum
2.42 times faster in a diamond that it does in air
Chapter 35 Solutions
University Physics (14th Edition)
Ch. 35 - A two-slit interference experiment is set up, and...Ch. 35 - Could an experiment similar to Youngs two-slit...Ch. 35 - Monochromatic coherent light passing through two...Ch. 35 - In a two-slit interference pattern on a distant...Ch. 35 - Would the headlights of a distant car form a...Ch. 35 - The two sources S1 and S2 shown in Fig. 35.3 emit...Ch. 35 - Could the Young two-slit interference experiment...Ch. 35 - Coherent red light illuminates two narrow slits...Ch. 35 - Coherent light with wavelength falls on two...Ch. 35 - Prob. Q35.10DQ
Ch. 35 - If the monochromatic light shown in Fig. 35.5a...Ch. 35 - In using the superposition principle to calculate...Ch. 35 - Prob. Q35.13DQCh. 35 - A very thin soap film (n = 1.33), whose thickness...Ch. 35 - Interference can occur in thin films. Why is it...Ch. 35 - If we shine while light on an air wedge like that...Ch. 35 - Prob. Q35.17DQCh. 35 - When a thin oil film spreads out on a puddle of...Ch. 35 - Section 35.1 Interference and Coherent Sources...Ch. 35 - Two speakers that are 15.0 m apart produce...Ch. 35 - A radio transmitting station operating at a...Ch. 35 - Radio Interference. Two radio antennas A and B...Ch. 35 - Prob. 35.5ECh. 35 - Two light sources can be adjusted to emit...Ch. 35 - Section 35.2 Two-Source Interference of Light...Ch. 35 - Coherent light with wavelength 450 nm falls on a...Ch. 35 - Two slits spaced 0.450 mm apart are placed 75.0 cm...Ch. 35 - If the entire apparatus of Exercise 35.9 (slits,...Ch. 35 - Two thin parallel slits that are 0.0116 mm apart...Ch. 35 - Coherent light with wavelength 400 nm passes...Ch. 35 - Two very narrow slits are spaced 1.80 m apart and...Ch. 35 - Coherent light that contains two wavelengths. 660...Ch. 35 - Coherent light with wavelength 600 nm passes...Ch. 35 - Coherent light of frequency 6.32 1014 Hz passes...Ch. 35 - In a two-slit interference pattern, the intensity...Ch. 35 - Coherent sources A and B emit electromagnetic...Ch. 35 - Coherent light with wavelength 500 nm passes...Ch. 35 - Two slits spaced 0.260 mm apart are 0.900 m from a...Ch. 35 - Consider two antennas separated by 9.00 m that...Ch. 35 - Two slits spaced 0.0720 mm apart are 0.800 m from...Ch. 35 - What is the thinnest film of a coating with n =...Ch. 35 - Nonglare Glass. When viewing a piece of art that...Ch. 35 - Two rectangular pieces of plane glass are laid one...Ch. 35 - A place of glass 9.00 cm long is placed in contact...Ch. 35 - A uniform film of TiO2, 1036 nm thick and having...Ch. 35 - A plastic film with index of refraction 1.70 is...Ch. 35 - The walls of a soap bubble have about the same...Ch. 35 - A researcher measures the thickness of a layer of...Ch. 35 - Prob. 35.31ECh. 35 - What is the thinnest soap film (excluding the case...Ch. 35 - How far must the mirror M2 (see Fig. 35.19) of the...Ch. 35 - Jan first uses a Michelson interferometer with the...Ch. 35 - One round face of a 3.25-m, solid, cylindrical...Ch. 35 - Newtons rings are visible when a planoconvex lens...Ch. 35 - BIO Coating Eyeglass Lenses. Eyeglass lenses can...Ch. 35 - BIO Sensitive Eyes. After an eye examination, you...Ch. 35 - Two flat plates of glass with parallel faces are...Ch. 35 - In a setup similar to that of Problem 35.39, the...Ch. 35 - Suppose you illuminate two thin slits by...Ch. 35 - CP CALC A very thin sheet of brass contains two...Ch. 35 - Two radio antennas radiating in phase are located...Ch. 35 - Prob. 35.44PCh. 35 - CP A thin uniform film of refractive index 1.750...Ch. 35 - GPS Transmission. The GPS (Global Positioning...Ch. 35 - White light reflects at normal incidence from the...Ch. 35 - Laser light of wavelength 510 nm is traveling in...Ch. 35 - Red light with wavelength 700 nm is passed through...Ch. 35 - BIO Reflective Coatings and Herring. Herring and...Ch. 35 - After a laser beam passes through two thin...Ch. 35 - DATA In your summer job at an optics company, you...Ch. 35 - DATA Short-wave radio antennas A and B are...Ch. 35 - DATA In your research lab, a very thin, flat piece...Ch. 35 - CP The index of refraction of a glass rod is 1.48...Ch. 35 - CP Figure P35.56 shows an interferometer known as...Ch. 35 - INTERFERENCE AND SOUND WAVES. Interference occurs...Ch. 35 - The professor returns the apparatus to the...Ch. 35 - The professor again returns the apparatus to its...Ch. 35 - The professor once again returns the apparatus to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A child attempts to drink water through a 36-cm-long straw but finds that the water rises only 25 cm. By how mu...
Essential University Physics: Volume 1 (3rd Edition)
34.77 (a) You want to use a lens with a focal length of 35.0 cm to produce a real image of an object, with the ...
University Physics with Modern Physics (14th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk(*) desig...
The Cosmic Perspective Fundamentals (2nd Edition)
26. Parasaurolophus was a dinosaur whose distinguishing feature was a hollow crest on the head. The 1.5-m-long ...
College Physics: A Strategic Approach (4th Edition)
Choose the best answer to each of the following. Explain your reasoning. Kepler made a major break from ancient...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardBoth sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forwardTwo polarizing sheets P1 and P2 are placed together with their transmission axes oriented at an angle to each other. What is when only 25% of the maximum transmitted light intensity passes through them?arrow_forward
- Problem 8 :We wish to coat a flat slab of glass (n 1.5) with a %3D transparent material (n-1.25) so that light of wavelength 620nm (in vacuum) incident normally is not reflected. What should be the minimum thickness of the coating? Air=1 Film= Glass=1.5 1.25 a 111arrow_forwardA soap bubble (n = 1.35) is floating in air. If the thickness of the bubble wall is 300 nm, which of the following wavelengths of visible light is strongly reflected? A) 620 nm (red) B) 580 nm (yellow) C) 540 nm (green) D) 500 nm (blue) Why does m=1?arrow_forwardA glass surface is coated by an oil film of uniform thickness 1.00 x 10-4 cm. The index of refraction of the oil is 1.25 and that of the glass is 1.50. Some of the wavelengths in visible region (400 nm 490 nm) are completely transmitted by the oil film under normal incidence. n x 10 One of the wavelength transmitted completely in visible region is m. Find the value 11 of n.arrow_forward
- The refractive index of the standard blue (λ = 486.1 nm) and red (λ = 656.3 nm) hydrogen lines in extra-dense flint are 1.74 and 1.71, respectively. If white light strikes the flint surface in air at an angle of θ=30 degrees, what is the angular separation between the two colors?arrow_forwardA ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80°. What is the angular separation between the refracted red and refracted blue beams while they are in the glass? (The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.) O 0.27° 0.33° O 0.36° O 0.46° O 0.54°arrow_forwardThe walls of a soap bubble have about the same index of refraction as that of plain water, n = 1.33. There is air both inside and outside the bubble. What wavelength (in air) of visible light is most strongly reflected from a point on a soap bubble where its wall is 340. nm thick? Note: Your answer is assumed to be reduced to the highest power possible.arrow_forward
- Two rectangular optically flat plates (n=1.52) are in contact along one end and are separated along the other end by a 2.00μm-thick spacer (Fig. P24.24). The top plate is illuminated by monochromatic light of wavelength 546.1 nm. Calculate the number of dark parallel bands crossing the top plate (including the dark band at zero thickness along the edge of contact between the plates).arrow_forwardAn oil film (n=1.45) floating on water is illuminated by white light at normal incidence. The film is 280 nm thick. Find a) the wavelength of light in the visible spectrum most strongly reflected and b) the wavelength of light in the visible spectrum most strongly transmitted. (nwater=1.33).arrow_forwardA thin layer of oil with index of refraction n, = 1.47 is floating above the water. The index of refraction of water is n, =1.3. The index of refraction of air is n, = 1. A light| with wavelength À = 725 nm goes in from the air to oil and water. (a) Express the wavelength of the light in the oil, d,, in terms of å and n„. n. n. n. (b) Express the minimum thickness of the film that will result in destructive interference, fmin, in terms of 7g. (c) Express 1min in terms of 2 and n,. (d) Solve for the numerical value of tmin in nm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY