Two thin parallel slits that are 0.0116 mm apart are illuminated by a laser beam of wavelength 585 nm. (a) On a very large distant screen, what is the total number of bright fringes (those indicating complete constructive interference), including the central fringe and those on both sides of it? Solve this problem without calculating all the angles! ( Hint: What is the largest that sin θ can be? What does this tell you is the largest value of m ?) (b) At what angle, relative to the original direction of the beam, will the fringe that is most distant from the central bright fringe occur?
Two thin parallel slits that are 0.0116 mm apart are illuminated by a laser beam of wavelength 585 nm. (a) On a very large distant screen, what is the total number of bright fringes (those indicating complete constructive interference), including the central fringe and those on both sides of it? Solve this problem without calculating all the angles! ( Hint: What is the largest that sin θ can be? What does this tell you is the largest value of m ?) (b) At what angle, relative to the original direction of the beam, will the fringe that is most distant from the central bright fringe occur?
Two thin parallel slits that are 0.0116 mm apart are illuminated by a laser beam of wavelength 585 nm. (a) On a very large distant screen, what is the total number of bright fringes (those indicating complete constructive interference), including the central fringe and those on both sides of it? Solve this problem without calculating all the angles! (Hint: What is the largest that sin θ can be? What does this tell you is the largest value of m?) (b) At what angle, relative to the original direction of the beam, will the fringe that is most distant from the central bright fringe occur?
While cruising down University Boulevard you are stopped by a cop who states that you ran a red traffic light. Because you don't
want to pay the stiff fine, you are attempting a physics defense. You claim that due to the relativistic Doppler effect, the red color of
the light λ=616 nm appeared green '=531 nm to you. The cop makes a quick calculation of his own and rejects your defense.
How fast, in terms of your speed u divided by the speed of light in vacuum c, would you have to drive to justify your claim? Note
that the speed u is taken to be a positive quantity.
U 4.0
C
220 V is supplied to 800 primary turns of an autotransformer. What will the outputvoltage be across 200 secondary turns?
2. A filament transformer has a turns ratio of 1:20. What current must be supplied to theprimary windings if 5 A is required by the filament?
3. The filament transformer in the previous question is supplied with 150 V to theprimary side. What is the secondary voltage?
4. 440 V is supplied to 1000 primary turns of an autotransformer. If the desired outputvoltage is 100 V how many secondary turns must be tapped?
220 volts is supplied across 1200 winding of the primary coil of the autotransformer.If 1650 windings are tapped, what voltage will be supplied to the primary coil of thehigh-voltage transformer?2. A kVp meter reads 86 kVp and the turns ratio of the high-voltage step-up transformeris 1200. What is the true voltage across the meter?3. The supply voltage from the autotransformer to the filament transformer is 60 volts. If theturns ratio of the filament transformer is 1/12, what is the filament voltage?4. If the current in the primary side of the filament transformer in question 3 were 0.5 A,what would be the filament current?5. The supply to a high-voltage step-up transformer with a turns ratio of 550 is 190 volts.What is the voltage across the x-ray tube?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY