![Physics for Scientists and Engineers with Modern Physics](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_largeCoverImage.gif)
(a)
The image position of the fishes that are located at
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 19P
The image is
Explanation of Solution
Given info: The radius of curvature of the curved plastic is
The formula to calculate image position of the fish inside the aquarium is,
Here,
The radius of curvature will be negative the centre of curvature lies on the object side.
For part (i): when the fish is at
Substitute
The image position for the fish at
For part (ii) when the fish is at
From equation (2) the image position is,
The image is at
Conclusion:
Therefore, the image is
(b)
The magnification of the images for part (a)
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 19P
The magnification of the image is
Explanation of Solution
Given info: The radius of curvature of the curved plastic is
The formula to calculate the magnification of the image is,
For part (i): when the fish is at
Substitute
Thus when the fish is at
For part (ii): when the fish is at
Substitute
Thus when the fish is at
Conclusion:
Therefore, when the fish is at
(c)
The reason refractive index of the plastic is not required to solve the problem.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 19P
The refractive index of plastic is not playing any major role in light propagation
Explanation of Solution
The plastic has uniform thickness and the surface from which the ray is entering and the surface from which is leaving are parallel to each other. The ray might get slightly displaced, but it will not change the direction of its propagation by going through plastic air interface. The only difference will be due to water-air interface.
Conclusion:
Therefore, the ray might get slightly displaced, but it will not change the direction of its propagation by going through plastic air interface. So the refractive index of plastic is not playing any major role in light propagation.
(e)
The image distance of the fish is greater than the fish itself and the magnification
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 19P
Yes, the image distance of the fish can be larger than the distance where the fish is itself.
Explanation of Solution
For the object distance greater than the radius of curvature the image distance will greater than the distance at which fish is itself. If the aquarium were very long the radius of curvature will not increase therefore if the object distance is more than the radius of curvature the image of the fish will be at even farther distance away from the fish itself.
Conclusion:
Therefore, If the fish is present at distance larger than the radius of curvature the image of the fish would be even farther than that of fish itself.
(d)
The magnification of the image when the image of the fish is even farther than the position of fish itself.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 19P
.
Explanation of Solution
Let the object distance is greater than the radius of curvature.
For the condition
Formula to calculate the image distance from Lens formula
Substitute
For the condition
Take reciprocal of the above question
Formula to calculate the image distance from Lens formula,
Divide by
The condition is when the image distance is greater than the radius of curvature take the magnitude of the equation.
Substitute
The reciprocal of the equation is
Thus the image of the fish will also be at greater distance than that of radius of curvature.
An example for the above case is let the fish is at twice the distance of the magnitude of radius of curvature.
The image of the fish is calculated from the formula from equation (7).
Substitute
Thus the image of the fish is
The formula to calculate the magnification of the image is,
Substitute
Thus the magnification of the fish image is
Conclusion:
Therefore, if the fish is present at distance larger than the radius of curvature the image of the fish would be even farther than that of fish itself.
Want to see more full solutions like this?
Chapter 35 Solutions
Physics for Scientists and Engineers with Modern Physics
- No chatgpt plsarrow_forwardNo chatgpt pls will upvotearrow_forwardA shot putter releases a shot at 13 m/s at an angle of 42 degrees to the horizontal and from a height of 1.83 m above the ground. Calculate. Note: For each question draw a diagram to show the vector/s. Show all the steps and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise. Answer all parts and show all work please.arrow_forward
- A player kicks a football at the start of the game. After a 4 second flight, the ball touches the ground 50 m from the kicking tee. Assume air resistance is negligible and the take-off and landing height are the same (i.e., time to peak = time to fall = ½ total flight time). Calculate: Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.)arrow_forwardIf I stand next to a wall on a frictionless skateboard and push the wall with a force of 25 N, what would my acceleration be if my mass is 75 kg?arrow_forwardWhat is the direction of the magnetic force on the current shown in the following figures?arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)