
Concept explainers
(a)
To find : the time necessary for P dollars to double (when investment compounded annually).
(a)

Answer to Problem 16E
The time necessary for P dollars to double(Compounded annually) is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 6.5%, and it compounded annually
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For periodic compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Simplify the expression in the left side of the equation | |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by ln(1.065) on both sides | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 11years for P dollars to double when it is invested at interest rate
(b)
To find : the time necessary for P dollars to double when investment compounded monthly.
(b)

Answer to Problem 16E
The time necessary for P dollars to double(compounded monthly) is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 6.5%, and it compounded monthly
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For periodic compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Simplify the expression in the left side of the equation | |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 10.6927 years for P dollars to double when it is invested at interest rate
(c)
To find : the time necessary for P dollars to double when investment compounded daily.
(c)

Answer to Problem 16E
The time necessary for P dollars to double (compounded daily) is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 6.5%, and it compounded daily
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For periodic compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Simplify the expression in the left side of the equation | |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 10.6648 years for P dollars to double when it is invested at interest rate
(d)
To find : the time necessary for P dollars to double when investment compounded continuously.
(d)

Answer to Problem 16E
The time necessary for P dollars to double (compounded continuously) is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 6.5%, and it compounded continuously
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For continuous compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by 0.065 on both sides | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 10.6638 years for P dollars to double when it is invested at interest rate
Chapter 3 Solutions
EBK PRECALCULUS W/LIMITS
- Showing all working and using row operations determine all solutions to the follow- ing system of equations. 2x + 3y-2z = 8, -2x+y+6z= 12, -x+3y-2z = −4.arrow_forward8:38 *** TEMU 8 5G. 61% Score on last try: 0 of 1 pts. See Details for more. > Next question Get a similar question You can retry this question below Give the equation for the function which would have graph shown below. Use f(x) for the output. 54 3 2 1 12-11-10 -8 -7 -6 -5 -4 -3 -2 -3 23456 -4 -5 -6 -2 f(x) = 3 sin ( 7/7 x ) +2 Question Help: ☑Video ☑Message instructor Submit Question ||| <arrow_forward2:21 MM -8 -7 -6 -5 -4 0 5 4 3 2 N -3 -4 +5 +6 5G 100% Identify the function whose graph appears above. f(x) = = tan X 3 ✓ Question Help: ☐ Video ☐ Message instructor Submit Question |||arrow_forward
- 4 3. 2. 1 0 Π 元 -1 3 x -53. 5π 2π The graph of the function y = f(x) is shown in the xy-plane. Which of the following is the graph of the polar function r = f(e) in the polar coordinate system? A B Polar axis Polar axis Polar axis Polar axisarrow_forward٣:٥٣ النموذج الاول . . . O O O بشما ند الحمر الحمر الجمهورية الجنية وزارة التربية والتعليم اليوم التاريخ اللجنة العليا للاختبارات الزمن اختبار مادة الجبر والهندسة لجنة المطابع السرية المركزية للشهادة الثانوية العامة (القسم العلمي) الفترة %97 (1) ظلل في ورقة الإجابة الدائرة التي تحتوي على الحرف ( ص ) للإجابة الصحيحة والحرف ( خ ) للإجابة الخطأ بحسب رقم الفقرة لكل مما يأتي ( درجة لكل فقرة ) )1 ) 2 ) 3 ) 4 ) بؤرة القطع س" = ١٢ ص هي ( ۲ ) طول المحور الأصغر للقطع ٩ س + ص = ٩ يساوي 6 وحدات طول . ) إذا كان & عدد مركب ، 181 + 11 = ٦ ، فإن ١١ = ٣ . ) إذا كان م + ۳ ت = ۲ + ت ب م ، ب دع ، فإن م + ب = 5 ( ) إذا كان & = ۱ + ٣ ت ، فإن ٠ = ١٠ . 6 ( - ) إذا كان ٥٠ - ٣ - ١٢٠ ٤ - ٣ ، فإن قيمة ٧ = ٥ . 1 ) = N ) إذا كان ح هو الحد الخالي من س في المفكوك ( س + v. N 8 ( ( قيمة المقدار , = + ۱ ، * . . + ، فإن قيمة ٧ = ١٦ . ۱ + 9 ( ) المستقيمان المقاربان للقطع الذي معادلته س" = ١ هما ص = : ۹ 10 ( ) إذا كان ٥ + س = ٢٤ ، فإن قيمة س = - 1 س 11 ( ) إذا كانت النسبة بين الحدين الأوسطين تساوي 9 في المفكوك ( س + - ) ،…arrow_forwardالاسم يمنع استخدام الآلة الحاسبة ظلل في ورقة الإجابة الدائرة التي تحتوي على الحرف (ص) للإجابة الصحيحة والحرف (خ) للإجابة الخطأ بحسب رقم الفقرة لكل مما يأتي: درجة لكل فقرة. ( ) نها جا 元 جتا = صفر س ۱ س س -۱ ( ) يمكن إعادة تعريف الدالة د(س) = س قاس لكي تكون متصلة عند س = 7 ( ) إذا كانت د(س) = (٢) س - س ) ؛ فإن د(١) = ٦ ٢ س ص ( ) إذا كانت س + 0= ؛ فإن عند ) - ١ ، - ٦ ) تساوي (٦) ( ) إذا كانت د(س) = س ه ، و (س) = ٣ س ٢ + ٢ س ؛ فإن ( د ) (۱) = ۸ ) ( معادلة ناظم الدالة ص = د(س) عند النقطة ) ( ، د (۲)) هي ص - (د (م) - - د (۲) ( س - م ) ( ) إذا كانت ص = ظتا٢ س ؛ فإن ص = ٢ ص قتا ٢س ) ( إذا كانت د(س) = س ؛ فإن د (T) = جتاس 1- T ( ) إذا كانت د(س) = 1 - جناس جاس ؛ فإن د () = - 1 ( ) إذا كانت الدالة د (س) تحقق شروط مبرهنة القيمة المتوسطة على [ ، ب ] ، فإنه يوجد جـ ] ، ب [ بحيث (جـ) = (P) + (~)- - ب + P 1 2 3 4 5 6 7 8 9 10 11 ( ) للدالة د(س) = لو ( س ) + (٣) نقطة حرجة عند س = . ( ) إذا كان س = - ٢ مقارباً رأسياً للدالة د(س) 12 10 13 14 15 16 17 س = لو|س | + ث - = ۲ س + ٣ ب س + ٤ ، فإن معادلة…arrow_forward
- 2. Symmetry Evaluate the following integrals using symmetry argu- ments. Let R = {(x, y): -a ≤ x ≤ a, −b ≤ y ≤ b}, where a and b are positive real numbers. a. SS Sf xye xye¯(x² + y²) dA R b. C sin (x − y) - dA x² + y² + 1 Rarrow_forwardChoose a convenient order When converted to an iterated integral, the following double integrals are easier to evaluate in one order please show all stepsarrow_forwardplease show all workarrow_forward
- calc 3arrow_forward3. P 2. 1 -3-2-10 1 2 3 -2- X The graph of point P is given in the xy-plane. Which of the following are possible polar coordinates of point P? A Ⓐ(2, 2) (2, 1/1/1) B (2, 3) C Ⓒ =) (2√2, 41 ) D (2√2, 3) 4arrow_forwardThe graph of f' is below. Use it to determine where the local minima and maxima for f are. If there are multiple answers, separate with commas. 2 f'(x) N -5 -4 3-2-1 -1 -2 -3 -4 12 3 4 5 -x Local minima at x Local maxima at xarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





