Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 13P
(II) Light of wavelength 750 nm passes through a slit 1.0 μm wide and a single-slit diffraction pattern is formed vertically on a screen 25 cm away. Determine the light intensity I 15 cm above the central maximum, expressed as a fraction of the central maximum’s intensity I0.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(b) Coherent light is diffracted by a single slit which is 15 µm wide. The central
maximum of the diffracted light has a width of 1.4 cm when it falls on a
screen 0.15 m behind the slit. Determine the wavelength of the incident
light.
answer for a i) ii)
(b) Calculate the missing orders in a double slit Fraunhoffer diffraction pattern when the width
of each slit is 0.06 × 10*m and they are 0.03 x 10°cm apart.
Chapter 35 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 35.1 - Single-slit diffraction maximum. Light of...Ch. 35.4 - Green light (550 nm) passes through a...Ch. 35.5 - What is the resolving power of a microscope with a...Ch. 35.10 - Prob. 1DECh. 35.11 - CONCEPTUAL EXAMPLE 3514 Three Polaroids. We saw in...Ch. 35 - Radio waves and light are both electromagnetic...Ch. 35 - Hold one hand close to your eye and focus on a...Ch. 35 - Explain why diffraction patterns are more...Ch. 35 - For diffraction by a single slit, what is the...Ch. 35 - Describe the single-slit diffraction pattern...
Ch. 35 - What happens to the diffraction pattern of a...Ch. 35 - In the single-slit diffraction pattern, why does...Ch. 35 - Discuss the similarities, and differences, of...Ch. 35 - Figure 3510 shows a two-slit interference pattern...Ch. 35 - When both diffraction and interference are taken...Ch. 35 - Does diffraction limit the resolution of images...Ch. 35 - Give at least two advantages for the use of large...Ch. 35 - Atoms have diameters of about 108 cm. Can visible...Ch. 35 - Which color of visible light would give the best...Ch. 35 - Could a diffraction grating just as well be called...Ch. 35 - Suppose light consisting of wavelengths between...Ch. 35 - What is the difference in the interference...Ch. 35 - White light strikes (a) a diffraction grating and...Ch. 35 - Explain why there are tiny peaks between the main...Ch. 35 - What does polarization tell us about the nature of...Ch. 35 - How can you tell if a pair of sunglasses is...Ch. 35 - Prob. 23QCh. 35 - (I) If 680-nm light falls on a slit 0.0365 mm...Ch. 35 - (I) Monochromatic light falls on a slit that is...Ch. 35 - (II) Light of wavelength 580 nm falls on a slit...Ch. 35 - (II) Consider microwaves which are incident...Ch. 35 - (II) If parallel light falls on a single slit of...Ch. 35 - (II) Monochromatic light of wavelength 633 nm...Ch. 35 - (II) If a slit diffracts 580-nm light so that the...Ch. 35 - (II) (a) For a given wavelength , what is the...Ch. 35 - (II) When blue light of wavelength 440 nm falls on...Ch. 35 - (II) A single slit 1.0 mm wide is illuminated by...Ch. 35 - (II) Coherent light from a laser diode is emitted...Ch. 35 - (II) If you double the width of a single slit, the...Ch. 35 - (II) Light of wavelength 750 nm passes through a...Ch. 35 - (II) If a double-slit pattern contains exactly...Ch. 35 - (II) Design a double-slit apparatus so that the...Ch. 35 - (II) 605-nm light passes through a pair of slits...Ch. 35 - (II) Two 0.010-mm-wide slits are 0.030mm apart...Ch. 35 - (II) Suppose d = D in a double-slit apparatus, so...Ch. 35 - (II) In a double-slit experiment, let d = 5.00D =...Ch. 35 - (II) How many fringes are contained in the central...Ch. 35 - (I) What is the angular resolution limit (degrees)...Ch. 35 - (II) Two stars 16 light-years away are barely...Ch. 35 - (II) The nearest neighboring star to the Sun is...Ch. 35 - (II) If you shine a flashlight beam toward the...Ch. 35 - (II) Suppose that you wish to construct a...Ch. 35 - (II) The normal lens on a 35-mm camera has a focal...Ch. 35 - (I) At what angle will 480-nm light produce a...Ch. 35 - (I) A source produces first-order lines when...Ch. 35 - (I) A 3500-line/cm grating produces a third-order...Ch. 35 - (I) A grating has 6800 lines/cm. How many spectral...Ch. 35 - (II) How many lines per centimeter does a grating...Ch. 35 - (II) Red laser light from a He-Ne laser ( = 632.8...Ch. 35 - (II) White light containing wavelengths from 410...Ch. 35 - (II) A diffraction grating has 6.0 l05 lines/m....Ch. 35 - (II) A tungstenhalogen bulb emits a continuous...Ch. 35 - (II) Show that the second- and third-order spectra...Ch. 35 - (II) Two first-order spectrum lines are measured...Ch. 35 - (II) Suppose the angles measured in Problem 40...Ch. 35 - (II) The first-order line of 589-nm light falling...Ch. 35 - Prob. 43PCh. 35 - (II) Missing orders occur for a diffraction...Ch. 35 - (II) A 6500-line/cm diffraction grating is 3.18 cm...Ch. 35 - (II) A diffraction grating has 16,000 rulings in...Ch. 35 - (II) Let 580-nm light be incident normally on a...Ch. 35 - Prob. 49PCh. 35 - (II) First-order Bragg diffraction is observed at...Ch. 35 - Prob. 51PCh. 35 - (I) Two polarizers are oriented at 65 to one...Ch. 35 - (I) Two Polaroids are aligned so that the light...Ch. 35 - (I) What is Brewsters angle for an airglass (n =...Ch. 35 - (I) What is Brewsters angle for a diamond...Ch. 35 - (II) The critical angle for total internal...Ch. 35 - (II) At what angle should the axes of two...Ch. 35 - (II) Two polarizers are oriented at 36.0 to one...Ch. 35 - (II) What would Brewsters angle be for reflections...Ch. 35 - (II) Unpolarized light passes through six...Ch. 35 - (II) Two polarizers A and B are aligned so that...Ch. 35 - (III) The percent polarization P of a partially...Ch. 35 - When violet light of wavelength 415 nm falls on a...Ch. 35 - A series of polarizers are each placed at a 10...Ch. 35 - The wings of a certain beetle have a series of...Ch. 35 - A teacher stands well back from an outside doorway...Ch. 35 - Light is incident on a diffraction grating with...Ch. 35 - How many lines per centimeter must a grating have...Ch. 35 - When yellow sodium light, = 589 nm, falls on a...Ch. 35 - Prob. 70GPCh. 35 - (a) How far away can a human eye distinguish two...Ch. 35 - A laser beam passes through a slit of width 1.0 cm...Ch. 35 - Prob. 73GPCh. 35 - At what angle above the horizon is the Sun when...Ch. 35 - Unpolarized light tails on two polarizer sheets...Ch. 35 - Al what angle should the axes of two Polaroids be...Ch. 35 - Four polarizers are placed in succession with...Ch. 35 - Spy planes fly at extremely high altitudes (25 km)...Ch. 35 - Two polarizers are oriented at 48 to each other...Ch. 35 - Prob. 81GPCh. 35 - The Hubble Space Telescope with an objective...Ch. 35 - The Earth and Moon are separated by about 400 106...Ch. 35 - A slit of width D = 22 m is cut through a thin...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
What are the minimum and maximum ages of the island of Kauai? Minimum age: ______million yr Maximum age: ______...
Applications and Investigations in Earth Science (9th Edition)
What properties do all types of epithelia share?
Campbell Biology (11th Edition)
95. What is the minimum amount of necessary to produce 15.0 g of according to the reaction:
...
Introductory Chemistry (6th Edition)
Draw the enol tautomers for each of the following compounds. For compounds that have more than one enol tautome...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A monochromatic light of unknown wavelength is incident on a slit of width 20 m. A diffraction pattern is seen at a screen 2.5 m away where the central maximum is spread over a distance of 10.0 cm. Find the wavelength.arrow_forwardCheck Your Understanding Although m, the number of fringes observed, is an integer, which is often regarded as having zero uncertainty, in practical terms, it is all too easy to lose track when counting fringes. In Example 3.6, if you estimate that you might have missed as many as five fringes when you reported m=122 fringes, (a) is the value for the index of refraction worked out in Example 3.6 too large or too small? (b) By how much?arrow_forwardA single slit of width 2100 nm is illuminated normally by a wave of wavelength 632.8 nm. Find the phase difference between waves from the top and one third from the bottom of the slit to a point on a screen at a horizontal distance of 2.0 m and vertical distance of 10.0 cm from the center.arrow_forward
- A single slit of width 0.10 mm is illuminated by a mercury lamp of wavelength 576 nm. Find the intensity at a 10° angle to the axis in terms of the intensity of the central maximum.arrow_forwardFigure 27.56 shows a double slit located a distance x from a screen, with the distance from the center of the screen given by y. When the distance d between the slits is relatively large, there will be numerous bright spots, called fringes. Show that, for small angles (where sin, with in radians), the distance between fringes is given by y=x/d. Figure 27.56 The distance between adjacent fringes is y=x/d, assuming the slit separation d is large compared with .arrow_forwardWhat is the wavelength of light falling on double slits separated by 2.00 m if the third-order maximum is at an angle of 60.0° ?arrow_forward
- When a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forwardBoth sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forwardA film of oil on water will appear dark when it is very thin, because the path length difference becomes small compared with the wavelength of light and there is a phase shift at the top surface. If it becomes dark when the path length difference is less than one-fourth the wavelength, what is the thickest the oil can be and appear dark at all visible wavelengths? Oil has an index of refraction of 1.40.arrow_forward
- Figure 3.14 shows two 7.50-cm-long glass slides illuminated by pure 589-nm wavelength light incident perpendicularly. The top slide touches the bottom slide at one end and rests on some debris at the other end, forming a wedge of air. How thick is the debris, if the dark bands are 1.00 mm apart? Figure 3.14 (a) The rainbow-color bands are produced by thin-film interference in the air between the two glass slides. (b) Schematic of the paths taken by rays in the wedge of air between the slides. (c) If the air wedge is illuminated with monochromatic light, bright and dark bands are obtained rather than repeating rainbow colors.arrow_forwardCalculate the wavelength of light that produces its first minimum at an angle of 36.9° when falling on a single slit of width 1.00 m.arrow_forwardFor 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY