Physics for Scientists and Engineers With Modern Physics
Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 34, Problem 73AP

(a)

To determine

The radius of the hemisphere.

(a)

Expert Solution
Check Mark

Answer to Problem 73AP

The radius of the hemisphere is 0.161m .

Explanation of Solution

Given info: The weight of the black cat is 5.50kg , the weight of the kittens is 0.800kg , the temperature of the hemisphere is 31.0°C , the emissivity of the black cat is 0.970 and the uniform density is 990kg/m3 .

The formula to calculate the total mass is,

m=mc+4mk

Here,

mc is the mass of cat.

mk is the mass of the kitten.

Substitute 5.50kg for mc and 0.800kg for mk in the above equation to find the value of m .

m=5.50kg+4(0.800kg)=8.7kg

The formula to calculate the mass of the hemisphere is,

m=(23πr3)ρ (1)

Here,

r is the radius of the hemisphere.

ρ is the density of the hemisphere.

Substitute 8.7kg for m and 990kg/m3 for ρ in equation (1) to find the value of r .

8.7kg=(23πr3)(990kg/m3)r=(8.7kg)×3(990kg/m3)2π3=0.161m

Conclusion:

Therefore, the radius of the hemisphere is 0.161m .

(b)

To determine

The area of the curved surface.

(b)

Expert Solution
Check Mark

Answer to Problem 73AP

The area of the curved surface is 0.163m2 .

Explanation of Solution

Given info: The weight of the black cat is 5.50kg , the weight of the kittens is 0.800kg , the temperature of the hemisphere is 31.0°C , the emissivity of the black cat is 0.970 and the uniform density is 990kg/m3 .

The formula to calculate the area is,

A=2πr2

Substitute 0.161m for r in the above equation to find the value of A .

A=2π(0.161m)2=0.163m2

Conclusion:

Therefore, the area of the curved surface is 0.163m2 .

(c)

To determine

The power emitted by the cats.

(c)

Expert Solution
Check Mark

Answer to Problem 73AP

The power emitted by the cats is 76.8W .

Explanation of Solution

Given info: The weight of the black cat is 5.50kg , the weight of the kittens is 0.800kg , the temperature of the hemisphere is 31.0°C , the emissivity of the black cat is 0.970 and the uniform density is 990kg/m3 .

The formula to calculate the power emitted is,

P=σAT4

Here,

σ is the Stephan’s Boltzmann constant.

T is the temperature of the surroundings.

Substitute 5.54×10 8W/m2K4  for σ , 31.0°C for T and 0.163m2 for A in the above equation to find the value of P .

P=(5.54×10 8W/m2K4 )(0.163m2)(31.0°+273K)4=76.8W

Conclusion:

Therefore, the power emitted by the cats is 76.8W .

(d)

To determine

The intensity of radiation at the surface.

(d)

Expert Solution
Check Mark

Answer to Problem 73AP

The intensity of radiation at the surface is 470W/m2 .

Explanation of Solution

Given info: The weight of the black cat is 5.50kg , the weight of the kittens is 0.800kg , the temperature of the hemisphere is 31.0°C , the emissivity of the black cat is 0.970 and the uniform density is 990kg/m3 .

The formula to calculate the intensity of radiation is,

I=PA

Substitute 76.8W for P and 0.1634m2 for A in the above equation to find the value of I .

I=76.8W0.1634m2=470W/m2

Conclusion:

Therefore, the intensity of radiation at the surface is 470W/m2 .

(e)

To determine

The amplitude of electric field in the electromagnetic wave.

(e)

Expert Solution
Check Mark

Answer to Problem 73AP

The amplitude of electric field in the electromagnetic wave is 595V/m .

Explanation of Solution

Given info: The weight of the black cat is 5.50kg , the weight of the kittens is 0.800kg , the temperature of the hemisphere is 31.0°C , the emissivity of the black cat is 0.970 and the uniform density is 990kg/m3 .

The formula to calculate the amplitude of the electric field is,

E=2μcI

Here,

I is the intensity of wave.

c is the speed of the light.

μ is the permeability of vacuum.

Substitute 470W/m2 for I , 4π×107 for μ and 3×108m/s for c in the above equation to find the value of E .

E=2(4π×107)(3×108m/s)(470W/m2)=595V/m

Thus, the amplitude of electric field in the electromagnetic wave is 595V/m .

Conclusion:

Therefore, the amplitude of electric field in the electromagnetic wave is 595V/m .

(f)

To determine

The amplitude of magnetic field in the electromagnetic wave.

(f)

Expert Solution
Check Mark

Answer to Problem 73AP

The amplitude of magnetic field in the electromagnetic wave is 1.98μT .

Explanation of Solution

Given info: The weight of the black cat is 5.50kg , the weight of the kittens is 0.800kg , the temperature of the hemisphere is 31.0°C , the emissivity of the black cat is 0.970 and the uniform density is 990kg/m3 .

The formula to calculate the amplitude of the magnetic field is,

B=Ec

Substitute 595V/m for E and 3×108m/s for c in the above equation to find the value of B .

B=595V/m3×108m/s=1.98×106T×106μT1T=1.98μT

Conclusion:

Therefore, the amplitude of magnetic field in the electromagnetic wave is 1.98μT .

(g)

To determine

The total power radiated by the family of cat.

(g)

Expert Solution
Check Mark

Answer to Problem 73AP

The total power radiated by the family of cat is 119W .

Explanation of Solution

Given info: The weight of the black cat is 5.50kg , the weight of the kittens is 0.800kg , the temperature of the hemisphere is 31.0°C , the emissivity of the black cat is 0.970 and the uniform density is 990kg/m3 .

The formula to calculate the mass of the hemisphere is,

mk=(23πrk3)ρ

Here,

rk is the radius of the hemisphere covered by kittens.

ρ is the density of the hemisphere.

Substitute 0.800kg for mk and 990kg/m3 for ρ in equation (1) to find the value of rk .

0.800kg=(23πrk3)(990kg/m3)rk=(0.800kg)3(990kg/m3)2π3=0.156m

The formula to calculate the power radiated by the kittens is,

Pk=4σ(2πrk2)T4

Here,

σ is the Stephan’s Boltzmann constant.

T is the temperature of the surroundings.

Substitute 5.54×10 8W/m2K4  for σ , 31.0°C for T and 0.15m for rk in the above equation to find the value of Pk .

Pk=4×(5.54×10 8W/m2K4 )(2π(0.15m)2)(31.0°+273K)4=29.3W

The formula to calculate the mass of the hemisphere is,

mc=(23πrc3)ρ

Here,

rc is the radius of the hemisphere covered by kittens.

ρ is the density of the hemisphere.

Substitute 5.5kg for mc and 990kg/m3 for ρ in equation (1) to find the value of rc .

5.5kg=(23πrc3)(990kg/m3)rc=(5.5kg)3(990kg/m3)2π3=0.29m

The formula to calculate the power radiated by the cat is,

Pc=σ(2πrc2)T4

Here,

σ is the Stephan’s Boltzmann constant.

T is the temperature of the surroundings.

Substitute 5.54×10 8W/m2K4  for σ , 31.0°C for T and 0.29m for rc in the above equation to find the value of Pc .

Pc=(5.54×10 8W/m2K4 )(2π(0.31m)2)(31.0°+273K)4=26.4W

The formula to calculate the total power radiated by the family of cat is,

PT=e(2(Pc+PK)+(Pc+PK)6)

Substitute 0.98 for e , 28.638W for Pc and 29.3W for Pk in the above equation to find the value of PT .

PT=0.98(2(28.638W+29.3W)+(28.638W+29.3W)6)=119W

Conclusion:

Therefore, the total power radiated by the family of cat is 119W .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider the series M8 3 ཱ|༤༠ n=0 5n a. Find the general formula for the sum of the first k terms. Your answer should be in terms of k. Sk=3 1 5 5 k b. The sum of a series is defined as the limit of the sequence of partial sums, which means k 3 5n 1- = lim 3 k→∞ n=0 4 15 4 c. Select all true statements (there may be more than one correct answer): A. The series is a geometric series. B. The series converges. C. The series is a telescoping series (i.e., it is like a collapsible telescope). D. The series is a p-series.
A uniform ladder of length L and weight w is leaning against a vertical wall. The coefficient of static friction between the ladder and the floor is the same as that between the ladder and the wall. If this coefficient of static friction is μs : 0.535, determine the smallest angle the ladder can make with the floor without slipping. ° = A 14.0 m uniform ladder weighing 480 N rests against a frictionless wall. The ladder makes a 55.0°-angle with the horizontal. (a) Find the horizontal and vertical forces (in N) the ground exerts on the base of the ladder when an 850-N firefighter has climbed 4.10 m along the ladder from the bottom. horizontal force magnitude 342. N direction towards the wall ✓ vertical force 1330 N up magnitude direction (b) If the ladder is just on the verge of slipping when the firefighter is 9.10 m from the bottom, what is the coefficient of static friction between ladder and ground? 0.26 × You appear to be using 4.10 m from part (a) for the position of the…
Your neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, ma when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and hcm = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.)…

Chapter 34 Solutions

Physics for Scientists and Engineers With Modern Physics

Ch. 34 - Prob. 4OQCh. 34 - Prob. 5OQCh. 34 - Prob. 6OQCh. 34 - Prob. 7OQCh. 34 - Prob. 8OQCh. 34 - Prob. 9OQCh. 34 - Prob. 10OQCh. 34 - Prob. 11OQCh. 34 - Prob. 1CQCh. 34 - Prob. 2CQCh. 34 - Prob. 3CQCh. 34 - Prob. 4CQCh. 34 - Prob. 5CQCh. 34 - Prob. 6CQCh. 34 - Prob. 7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 9CQCh. 34 - Prob. 10CQCh. 34 - Prob. 11CQCh. 34 - Prob. 12CQCh. 34 - Prob. 13CQCh. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 10PCh. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - Prob. 45PCh. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54APCh. 34 - Prob. 55APCh. 34 - Prob. 56APCh. 34 - Prob. 57APCh. 34 - Prob. 58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - Prob. 60APCh. 34 - Prob. 61APCh. 34 - Prob. 62APCh. 34 - Prob. 63APCh. 34 - Prob. 64APCh. 34 - Prob. 65APCh. 34 - Prob. 66APCh. 34 - Prob. 67APCh. 34 - Prob. 68APCh. 34 - Prob. 69APCh. 34 - Prob. 70APCh. 34 - Prob. 71APCh. 34 - Prob. 72APCh. 34 - Prob. 73APCh. 34 - Prob. 74APCh. 34 - Prob. 75APCh. 34 - Prob. 76CPCh. 34 - Prob. 77CPCh. 34 - Prob. 78CPCh. 34 - Prob. 79CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning