69 through 79 GO 76, 78 SSM 75, 77 More lenses. Object O stands on the central axis of a thin symmetric lens. For this situation, each problem in Table 34-8 refer to (a) the lens type, converging (C) or diverging (D), (b) the focal distance f , (c) the object distance p , (d) the image distance i , and (e) the lateral magnification m . (All distances are in centimeters.) It also refers to whether (f) the image is real (R) or virtual (V), (g) inverted (I) or noninverted (NI) from O , and (h) on the same side of the lens as O or on the opposite side. Fill in the missing information, including the value of m when only an inequality is given. Where only a sign is missing, answer with the sign. Table 34-8 Problem 69 through 79: More Lenses. See the setup for these problems. (a) Type (b) f (c) p (d) i (e) m (f) R/V (g) I/NI (h) Side 69 +10 +5.0 70 20 +8.0 <1.0 NI 71 +16 +0.25 72 +16 –0.25 73 +10 –0.50 74 C 10 +20 75 10 +5.0 <1.0 Same 76 10 +5.0 >1.0 77 +16 +1.25 78 +10 0.50 NI 79 20 +8.0 >1.0
69 through 79 GO 76, 78 SSM 75, 77 More lenses. Object O stands on the central axis of a thin symmetric lens. For this situation, each problem in Table 34-8 refer to (a) the lens type, converging (C) or diverging (D), (b) the focal distance f , (c) the object distance p , (d) the image distance i , and (e) the lateral magnification m . (All distances are in centimeters.) It also refers to whether (f) the image is real (R) or virtual (V), (g) inverted (I) or noninverted (NI) from O , and (h) on the same side of the lens as O or on the opposite side. Fill in the missing information, including the value of m when only an inequality is given. Where only a sign is missing, answer with the sign. Table 34-8 Problem 69 through 79: More Lenses. See the setup for these problems. (a) Type (b) f (c) p (d) i (e) m (f) R/V (g) I/NI (h) Side 69 +10 +5.0 70 20 +8.0 <1.0 NI 71 +16 +0.25 72 +16 –0.25 73 +10 –0.50 74 C 10 +20 75 10 +5.0 <1.0 Same 76 10 +5.0 >1.0 77 +16 +1.25 78 +10 0.50 NI 79 20 +8.0 >1.0
69 through 79 GO 76, 78 SSM 75, 77 More lenses. Object O stands on the central axis of a thin symmetric lens. For this situation, each problem in Table 34-8 refer to (a) the lens type, converging (C) or diverging (D), (b) the focal distance f, (c) the object distance p, (d) the image distance i, and (e) the lateral magnification m. (All distances are in centimeters.) It also refers to whether (f) the image is real (R) or virtual (V), (g) inverted (I) or noninverted (NI) from O, and (h) on the same side of the lens as O or on the opposite side. Fill in the missing information, including the value of m when only an inequality is given. Where only a sign is missing, answer with the sign.
Table 34-8Problem 69 through 79: More Lenses. See the setup for these problems.
A 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first.
(a) What (in V) is the peak emf?
7.17
V
(b) At what time (in s) is the peak emf first reached?
0.196
S
(c) At what time (in s) is the emf first at its most negative?
0.589
x s
(d) What is the period (in s) of the AC voltage output?
0.785
S
A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?
For what type of force is it not possible to define a potential energy expression?
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.