Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020
Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020
6th Edition
ISBN: 9781418300203
Author: Prentice Hall
Publisher: Prentice Hall
Question
Book Icon
Chapter 3.4, Problem 69E

(a)

To determine

To find: The graph of y4 for a=2,3,4,5 .Generalized the description to an arbitrary a>1 .

(a)

Expert Solution
Check Mark

Answer to Problem 69E

Graph is given.

Explanation of Solution

Given information:

  y1=ax,y2=NDERy1,x,y3=y2y1,y4=ey3

Calculation:

The meaning of NDERy1,x is to differentiate y1 and find derivative in the form of y2=fx .

Differentiate y1=ax with respect to x :

  dy1dx=axlnay2=axlna

To find the value of y3=y2y1 substitute the value of y2 and y1 in y3=y2y1 .

  y3=axlnaaxy3=lna

Now given that y4=ey3 substitute the value of y3 :

  y4=elnay4=a

Draw the graph of y4=a for a=2,3,4,5 by substuting these value in place of a .

The graph will be the horizontal lines as y4=a is an equation of line which intersect at y=a and has the zero slope.

When a=2

  y4=a becomes:

  y4=2

When a=3

  y4=a becomes:

  y4=3

Similarly, for other values of a equation of lines will be y4=4 , y4=5

The graph for different values of a is given below:

  Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020, Chapter 3.4, Problem 69E , additional homework tip  1

For equation y1=ax if a>1

  y1=ax is an exponential function if the graph is drawn of that function is below:

  Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020, Chapter 3.4, Problem 69E , additional homework tip  2

It can be seen that as the exponent increases, the curves get steeper and the rate of growth increases respectively. A function which grows faster than a polynomial function is y=ax where a>1 . Thus, for any of the positive integers n the function fx is said to grow faster than that of fnx

Thus, the exponential function having base greater than 1, i.e., a > 1  is defined as y=ax . The domain of exponential function will be the set of entire real numbers R and the range are said to be the set of all the positive real numbers.

It must be noted that the exponential function is increasing and the point (0, 1)  always lies on the graph of an exponential function. Also, it is very close to zero if the value of x is mostly negative.

(b)

To determine

To find: The graph of y3 for a=2,3,4,5 .Compare the table of values for y3and lna .

(b)

Expert Solution
Check Mark

Answer to Problem 69E

The graph is given and values of y3and lna are equal. the values of y3=lna can only be calculated when a>1 .

Explanation of Solution

Given information:

  y1=ax,y2=NDERy1,x,y3=y2y1,y4=ey3

Calculation:

The meaning of NDERy1,x is to differentiate y1 and find derivative in the form of y2=fx .

Differentiate y1=ax with respect to x :

  dy1dx=axlnay2=axlna

To find the value of y3=y2y1 substitute the value of y2 and y1 in y3=y2y1 .

  y3=axlnaaxy3=lna

Draw the graph of y3=lna for a=2,3,4,5 by substuting these value in place of a .

When a=2

  y3=ln2

When a=3

  y3=ln3

When a=4

  y3=ln4

The graph of y3=lna for a=2,3,4,5 is given below:

  Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020, Chapter 3.4, Problem 69E , additional homework tip  3

For a=1

  y3=lna will give the value y3=ln1 or y3=0 .

Therefore the values of y3=lna can only be calculated when a>1 .

Basically the value found of y3 is lna so both values of y3 and lna represents the same values or it can be written as:

  y3=exlnalnaax

Here, ax=exlna

Table of values of y3 for a=2,3,4,5 is given below:

    a2345
    y=3lna0.691.0981.3861.60

(c)

To determine

To find: How part a and b supports the statement ddxax=ax if and only if a=e

(c)

Expert Solution
Check Mark

Explanation of Solution

Given information:

  y1=ax,y2=NDERy1,x,y3=y2y1,y4=ey3

Calculation:

The meaning of NDERy1,x is to differentiate y1 and find derivative in the form of y2=fx .

Differentiate y1=ax with respect to x :

  dy1dx=axlnay2=axlna

To find the value of y3=y2y1 substitute the value of y2 and y1 in y3=y2y1 .

  y3=axlnaaxy3=lna

In part (a) the value y2 is found y2=axlna

  ax can be written as exlna therefore y2 becomes:

  dy1dx=exlnalnaorddxax=exlnalna

If a=e is substituted in ddxax=exlnalna it gives:

  ddxax=exlnaln(e)ddxax=elnaxln(e)

Recall the fact that exponent and log functions are inverse to each other therefore ln(e)=1 .

Hence

  ddxax=ax

This proves that if a=e then only ddxax=ax is true.

Hence proved.

(d)

To determine

To find: prove algebraically y1=y2 if and only if a=e .

(d)

Expert Solution
Check Mark

Explanation of Solution

Given information:

  y1=ax,y2=NDERy1,x,y3=y2y1,y4=ey3

Calculation:

The meaning of NDERy1,x is to differentiate y1 and find derivative in the form of y2=fx .

Differentiate y1=ax with respect to x :

  dy1dx=axlnay2=axlna....(1)

  ax can be written as exlna hence y1 and y2 becomes:

  y1=axln(e)....(2)ln(e)=1

If a=e then equation 2 becomes y1=axln(a) which is equal to equation 1

  y2=exlnalna

Therefore it can be written as y1=y2 if and only if a=e .

Chapter 3 Solutions

Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020

Ch. 3.1 - Prob. 1ECh. 3.1 - Prob. 2ECh. 3.1 - Prob. 3ECh. 3.1 - Prob. 4ECh. 3.1 - Prob. 5ECh. 3.1 - Prob. 6ECh. 3.1 - Prob. 7ECh. 3.1 - Prob. 8ECh. 3.1 - Prob. 9ECh. 3.1 - Prob. 10ECh. 3.1 - Prob. 11ECh. 3.1 - Prob. 12ECh. 3.1 - Prob. 13ECh. 3.1 - Prob. 14ECh. 3.1 - Prob. 15ECh. 3.1 - Prob. 16ECh. 3.1 - Prob. 17ECh. 3.1 - Prob. 18ECh. 3.1 - Prob. 19ECh. 3.1 - Prob. 20ECh. 3.1 - Prob. 21ECh. 3.1 - Prob. 22ECh. 3.1 - Prob. 23ECh. 3.1 - Prob. 24ECh. 3.1 - Prob. 25ECh. 3.1 - Prob. 26ECh. 3.1 - Prob. 27ECh. 3.1 - Prob. 28ECh. 3.1 - Prob. 29ECh. 3.1 - Prob. 30ECh. 3.1 - Prob. 31ECh. 3.1 - Prob. 32ECh. 3.1 - Prob. 33ECh. 3.1 - Prob. 34ECh. 3.1 - Prob. 35ECh. 3.1 - Prob. 36ECh. 3.1 - Prob. 37ECh. 3.1 - Prob. 38ECh. 3.1 - Prob. 39ECh. 3.1 - Prob. 40ECh. 3.1 - Prob. 41ECh. 3.1 - Prob. 42ECh. 3.1 - Prob. 43ECh. 3.1 - Prob. 44ECh. 3.1 - Prob. 45ECh. 3.1 - Prob. 46ECh. 3.1 - Prob. 47ECh. 3.1 - Prob. 48ECh. 3.1 - Prob. 49ECh. 3.1 - Prob. 50ECh. 3.1 - Prob. 51ECh. 3.1 - Prob. 52ECh. 3.1 - Prob. 53ECh. 3.1 - Prob. 54ECh. 3.1 - Prob. 55ECh. 3.1 - Prob. 56ECh. 3.1 - Prob. 57ECh. 3.1 - Prob. 58ECh. 3.1 - Prob. 59ECh. 3.1 - Prob. 60ECh. 3.1 - Prob. 61ECh. 3.1 - Prob. 62ECh. 3.1 - Prob. 63ECh. 3.1 - Prob. 64ECh. 3.1 - Prob. 65ECh. 3.1 - Prob. 66ECh. 3.1 - Prob. 67ECh. 3.1 - Prob. 68ECh. 3.1 - Prob. 69ECh. 3.1 - Prob. 70ECh. 3.1 - Prob. 71ECh. 3.1 - Prob. 72ECh. 3.1 - Prob. 73ECh. 3.1 - Prob. 74ECh. 3.1 - Prob. 75ECh. 3.1 - Prob. 76ECh. 3.1 - Prob. 77ECh. 3.1 - Prob. 78ECh. 3.1 - Prob. 79ECh. 3.1 - Prob. 80ECh. 3.1 - Prob. 81ECh. 3.1 - Prob. 82ECh. 3.1 - Prob. 83ECh. 3.1 - Prob. 84ECh. 3.1 - Prob. 85ECh. 3.2 - Prob. 1QRCh. 3.2 - Prob. 2QRCh. 3.2 - Prob. 3QRCh. 3.2 - Prob. 4QRCh. 3.2 - Prob. 5QRCh. 3.2 - Prob. 6QRCh. 3.2 - Prob. 7QRCh. 3.2 - Prob. 8QRCh. 3.2 - Prob. 9QRCh. 3.2 - Prob. 10QRCh. 3.2 - Prob. 1ECh. 3.2 - Prob. 2ECh. 3.2 - Prob. 3ECh. 3.2 - Prob. 4ECh. 3.2 - Prob. 5ECh. 3.2 - Prob. 6ECh. 3.2 - Prob. 7ECh. 3.2 - Prob. 8ECh. 3.2 - Prob. 9ECh. 3.2 - Prob. 10ECh. 3.2 - Prob. 11ECh. 3.2 - Prob. 12ECh. 3.2 - Prob. 13ECh. 3.2 - Prob. 14ECh. 3.2 - Prob. 15ECh. 3.2 - Prob. 16ECh. 3.2 - Prob. 17ECh. 3.2 - Prob. 18ECh. 3.2 - Prob. 19ECh. 3.2 - Prob. 20ECh. 3.2 - Prob. 21ECh. 3.2 - Prob. 22ECh. 3.2 - Prob. 23ECh. 3.2 - Prob. 24ECh. 3.2 - Prob. 25ECh. 3.2 - Prob. 26ECh. 3.2 - Prob. 27ECh. 3.2 - Prob. 28ECh. 3.2 - Prob. 29ECh. 3.2 - Prob. 30ECh. 3.2 - Prob. 31ECh. 3.2 - Prob. 32ECh. 3.2 - Prob. 33ECh. 3.2 - Prob. 34ECh. 3.2 - Prob. 35ECh. 3.2 - Prob. 36ECh. 3.2 - Prob. 37ECh. 3.2 - Prob. 38ECh. 3.2 - Prob. 39ECh. 3.2 - Prob. 40ECh. 3.2 - Prob. 41ECh. 3.2 - Prob. 42ECh. 3.2 - Prob. 43ECh. 3.2 - Prob. 44ECh. 3.2 - Prob. 45ECh. 3.2 - Prob. 46ECh. 3.2 - Prob. 47ECh. 3.2 - Prob. 48ECh. 3.2 - Prob. 49ECh. 3.2 - Prob. 50ECh. 3.2 - Prob. 51ECh. 3.2 - Prob. 52ECh. 3.2 - Prob. 53ECh. 3.2 - Prob. 54ECh. 3.2 - Prob. 55ECh. 3.2 - Prob. 56ECh. 3.2 - Prob. 57ECh. 3.2 - Prob. 58ECh. 3.2 - Prob. 59ECh. 3.2 - Prob. 60ECh. 3.2 - Prob. 61ECh. 3.2 - Prob. 62ECh. 3.2 - Prob. 63ECh. 3.2 - Prob. 64ECh. 3.2 - Prob. 65ECh. 3.2 - Prob. 66ECh. 3.2 - Prob. 1QQCh. 3.2 - Prob. 2QQCh. 3.2 - Prob. 3QQCh. 3.2 - Prob. 4QQCh. 3.3 - Prob. 1QRCh. 3.3 - Prob. 2QRCh. 3.3 - Prob. 3QRCh. 3.3 - Prob. 4QRCh. 3.3 - Prob. 5QRCh. 3.3 - Prob. 6QRCh. 3.3 - Prob. 7QRCh. 3.3 - Prob. 8QRCh. 3.3 - Prob. 9QRCh. 3.3 - Prob. 10QRCh. 3.3 - Prob. 1ECh. 3.3 - Prob. 2ECh. 3.3 - Prob. 3ECh. 3.3 - Prob. 4ECh. 3.3 - Prob. 5ECh. 3.3 - Prob. 6ECh. 3.3 - Prob. 7ECh. 3.3 - Prob. 8ECh. 3.3 - Prob. 9ECh. 3.3 - Prob. 10ECh. 3.3 - Prob. 11ECh. 3.3 - Prob. 12ECh. 3.3 - Prob. 13ECh. 3.3 - Prob. 14ECh. 3.3 - Prob. 15ECh. 3.3 - Prob. 16ECh. 3.3 - Prob. 17ECh. 3.3 - Prob. 18ECh. 3.3 - Prob. 19ECh. 3.3 - Prob. 20ECh. 3.3 - Prob. 21ECh. 3.3 - Prob. 22ECh. 3.3 - Prob. 23ECh. 3.3 - Prob. 24ECh. 3.3 - Prob. 25ECh. 3.3 - Prob. 26ECh. 3.3 - Prob. 27ECh. 3.3 - Prob. 28ECh. 3.3 - Prob. 29ECh. 3.3 - Prob. 30ECh. 3.3 - Prob. 31ECh. 3.3 - Prob. 32ECh. 3.3 - Prob. 33ECh. 3.3 - Prob. 34ECh. 3.3 - Prob. 35ECh. 3.3 - Prob. 36ECh. 3.3 - Prob. 37ECh. 3.3 - Prob. 38ECh. 3.3 - Prob. 39ECh. 3.3 - Prob. 40ECh. 3.3 - Prob. 41ECh. 3.3 - Prob. 42ECh. 3.3 - Prob. 43ECh. 3.3 - Prob. 44ECh. 3.3 - Prob. 45ECh. 3.3 - Prob. 46ECh. 3.3 - Prob. 47ECh. 3.3 - Prob. 48ECh. 3.3 - Prob. 49ECh. 3.3 - Prob. 50ECh. 3.3 - Prob. 51ECh. 3.3 - Prob. 52ECh. 3.3 - Prob. 53ECh. 3.3 - Prob. 54ECh. 3.3 - Prob. 55ECh. 3.3 - Prob. 56ECh. 3.3 - Prob. 57ECh. 3.4 - Prob. 1QRCh. 3.4 - Prob. 2QRCh. 3.4 - Prob. 3QRCh. 3.4 - Prob. 4QRCh. 3.4 - Prob. 5QRCh. 3.4 - Prob. 6QRCh. 3.4 - Prob. 7QRCh. 3.4 - Prob. 8QRCh. 3.4 - Prob. 9QRCh. 3.4 - Prob. 10QRCh. 3.4 - Prob. 1ECh. 3.4 - Prob. 2ECh. 3.4 - Prob. 3ECh. 3.4 - Prob. 4ECh. 3.4 - Prob. 5ECh. 3.4 - Prob. 6ECh. 3.4 - Prob. 7ECh. 3.4 - Prob. 8ECh. 3.4 - Prob. 9ECh. 3.4 - Prob. 10ECh. 3.4 - Prob. 11ECh. 3.4 - Prob. 12ECh. 3.4 - Prob. 13ECh. 3.4 - Prob. 14ECh. 3.4 - Prob. 15ECh. 3.4 - Prob. 16ECh. 3.4 - Prob. 17ECh. 3.4 - Prob. 18ECh. 3.4 - Prob. 19ECh. 3.4 - Prob. 20ECh. 3.4 - Prob. 21ECh. 3.4 - Prob. 22ECh. 3.4 - Prob. 23ECh. 3.4 - Prob. 24ECh. 3.4 - Prob. 25ECh. 3.4 - Prob. 26ECh. 3.4 - Prob. 27ECh. 3.4 - Prob. 28ECh. 3.4 - Prob. 29ECh. 3.4 - Prob. 30ECh. 3.4 - Prob. 31ECh. 3.4 - Prob. 32ECh. 3.4 - Prob. 33ECh. 3.4 - Prob. 34ECh. 3.4 - Prob. 35ECh. 3.4 - Prob. 36ECh. 3.4 - Prob. 37ECh. 3.4 - Prob. 38ECh. 3.4 - Prob. 39ECh. 3.4 - Prob. 40ECh. 3.4 - Prob. 41ECh. 3.4 - Prob. 42ECh. 3.4 - Prob. 43ECh. 3.4 - Prob. 44ECh. 3.4 - Prob. 45ECh. 3.4 - Prob. 46ECh. 3.4 - Prob. 47ECh. 3.4 - Prob. 48ECh. 3.4 - Prob. 49ECh. 3.4 - Prob. 50ECh. 3.4 - Prob. 51ECh. 3.4 - Prob. 52ECh. 3.4 - Prob. 53ECh. 3.4 - Prob. 54ECh. 3.4 - Prob. 55ECh. 3.4 - Prob. 56ECh. 3.4 - Prob. 57ECh. 3.4 - Prob. 58ECh. 3.4 - Prob. 59ECh. 3.4 - Prob. 60ECh. 3.4 - Prob. 61ECh. 3.4 - Prob. 62ECh. 3.4 - Prob. 63ECh. 3.4 - Prob. 64ECh. 3.4 - Prob. 65ECh. 3.4 - Prob. 66ECh. 3.4 - Prob. 67ECh. 3.4 - Prob. 68ECh. 3.4 - Prob. 69ECh. 3.4 - Prob. 70ECh. 3.4 - Prob. 71ECh. 3.4 - Prob. 1QQCh. 3.4 - Prob. 2QQCh. 3.4 - Prob. 3QQCh. 3.4 - Prob. 4QQCh. 3 - Prob. 1RWDTCh. 3 - Prob. 2RWDTCh. 3 - Prob. 3RWDTCh. 3 - Prob. 4RWDTCh. 3 - Prob. 5RWDTCh. 3 - Prob. 6RWDTCh. 3 - Prob. 7RWDTCh. 3 - Prob. 8RWDTCh. 3 - Prob. 9RWDTCh. 3 - Prob. 10RWDTCh. 3 - Prob. 1RECh. 3 - Prob. 2RECh. 3 - Prob. 3RECh. 3 - Prob. 4RECh. 3 - Prob. 5RECh. 3 - Prob. 6RECh. 3 - Prob. 7RECh. 3 - Prob. 8RECh. 3 - Prob. 9RECh. 3 - Prob. 10RECh. 3 - Prob. 11RECh. 3 - Prob. 12RECh. 3 - Prob. 13RECh. 3 - Prob. 14RECh. 3 - Prob. 15RECh. 3 - Prob. 16RECh. 3 - Prob. 17RECh. 3 - Prob. 18RECh. 3 - Prob. 19RECh. 3 - Prob. 20RECh. 3 - Prob. 21RECh. 3 - Prob. 22RECh. 3 - Prob. 23RECh. 3 - Prob. 24RECh. 3 - Prob. 25RECh. 3 - Prob. 26RECh. 3 - Prob. 27RECh. 3 - Prob. 28RECh. 3 - Prob. 29RECh. 3 - Prob. 30RECh. 3 - Prob. 31RECh. 3 - Prob. 32RECh. 3 - Prob. 33RECh. 3 - Prob. 34RECh. 3 - Prob. 35RECh. 3 - Prob. 36RECh. 3 - Prob. 37RECh. 3 - Prob. 38RECh. 3 - Prob. 39RECh. 3 - Prob. 40RECh. 3 - Prob. 41RECh. 3 - Prob. 42RECh. 3 - Prob. 43RECh. 3 - Prob. 44RECh. 3 - Prob. 45RECh. 3 - Prob. 46RECh. 3 - Prob. 47RECh. 3 - Prob. 48RECh. 3 - Prob. 49RECh. 3 - Prob. 50RECh. 3 - Prob. 51RECh. 3 - Prob. 52RECh. 3 - Prob. 53RECh. 3 - Prob. 54RECh. 3 - Prob. 55RECh. 3 - Prob. 56RECh. 3 - Prob. 57RECh. 3 - Prob. 58RECh. 3 - Prob. 59RECh. 3 - Prob. 60RECh. 3 - Prob. 61RECh. 3 - Prob. 62RECh. 3 - Prob. 63RECh. 3 - Prob. 64RECh. 3 - Prob. 65RECh. 3 - Prob. 66RECh. 3 - Prob. 67RECh. 3 - Prob. 68RECh. 3 - Prob. 69RECh. 3 - Prob. 70RECh. 3 - Prob. 71RECh. 3 - Prob. 72RECh. 3 - Prob. 73RECh. 3 - Prob. 74RECh. 3 - Prob. 75RECh. 3 - Prob. 76RECh. 3 - Prob. 77RECh. 3 - Prob. 78RECh. 3 - Prob. 79RECh. 3 - Prob. 80RECh. 3 - Prob. 81EPCh. 3 - Prob. 82EPCh. 3 - Prob. 83EP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning