FUND.OF PHYSICS(LL)-PRINT COMP-W/ACCESS
11th Edition
ISBN: 9781119459170
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 47P
SSM WWW A double-convex lens is to be made of glass with an index of refraction of 1.5. One surface is to have twice the radius of curvature of the other and the focal length is to be 60 mm. What is the (a) smaller and (b) larger radius?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls
The position of a coffee cup on a table as referenced by the corner of the room in which it sits is r=0.5mi +1.5mj +2.0mk . How far is the cup from the corner? What is the unit vector pointing from the corner to the cup?
No chatgpt pls
Chapter 34 Solutions
FUND.OF PHYSICS(LL)-PRINT COMP-W/ACCESS
Ch. 34 - Figure 34-25 shows a fish and a fish stalker in...Ch. 34 - In Fig. 34-26, stick figure O stands in front of a...Ch. 34 - Figure 34-27 is an overhead view of a mirror maze...Ch. 34 - A penguin waddles along the central axis of a...Ch. 34 - When a T. rex pursues a jeep in the movie Jurassic...Ch. 34 - An object is placed against the center of a...Ch. 34 - The table details six variations of the basic...Ch. 34 - An object is placed against the center of a...Ch. 34 - Figure 34-30 shows four thin lenses, all of the...Ch. 34 - In Fig. 34-26, stick figure O stands in front of a...
Ch. 34 - Figure 34-31 shows a coordinate system in front of...Ch. 34 - You look through a camera towards an image of a...Ch. 34 - ILW A moth at about eye level is 10 cm in front of...Ch. 34 - In Fig. 34-32, an isotropic point source of light...Ch. 34 - Figure 34-33 shows an overhead view of a corridor...Ch. 34 - SSM WWW Figure 34-34 shows a small lightbulb...Ch. 34 - An object is moved along the central axis of a...Ch. 34 - A concave shaving mirror has a radius of curvature...Ch. 34 - An object is placed against the center of a...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22SSM 23, 29 More mirrors. Object...Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - GO Figure 34-37 gives the lateral magnification m...Ch. 34 - a A luminous point is moving at speed vo towards a...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - In Fig. 34-38, a beam of parallel light rays from...Ch. 34 - A glass sphere has radius R = 5.0 cm and index of...Ch. 34 - A lens is made of glass having an index of...Ch. 34 - Figure 34-40 gives the lateral magnification m of...Ch. 34 - A movie camera with a single lens of focal length...Ch. 34 - An object is placed against the center of a thin...Ch. 34 - You produce an image of the Sun on a screen, using...Ch. 34 - An object is placed against the center of a thin...Ch. 34 - SSM WWW A double-convex lens is to be made of...Ch. 34 - An object is moved along the central axis of a...Ch. 34 - SSM An illuminated slide is held 44 cm from a...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - In Fig. 34-44, a real inverted image I of an...Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - If the angular magnification of an astronomical...Ch. 34 - SSM In a microscope of the type shown in the Fig....Ch. 34 - Figure 34-46a shows the basic structure of an old...Ch. 34 - SSM Figure 34-47a shows the basic structure of a...Ch. 34 - An object is 10.0 mm from the objective of a...Ch. 34 - Someone with a near point Pn of 25 cm views a...Ch. 34 - An object is placed against the center of a...Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - SSM The formula 1/p 1/i = 1/f is called the...Ch. 34 - Figure 34-50a is an overhead view of two vertical...Ch. 34 - SSM Two thin lenses of focal lengths f1 and f2 are...Ch. 34 - Two plane mirrors are placed parallel to each...Ch. 34 - In Fig. 34-51, a box is somewhere at the left, on...Ch. 34 - In Fig. 34-52, an object is placed in front of a...Ch. 34 - SSM A fruit fly of height H sits in front of lens...Ch. 34 - You grind the lenses shown in Fig. 34-53 from flat...Ch. 34 - In Fig. 34-54, a fish watcher at point P watches a...Ch. 34 - A goldfish in a spherical fish bowl of radius R is...Ch. 34 - Figure 34-56 shows a beam expander made with two...Ch. 34 - You look down at a coin that lies at the bottom of...Ch. 34 - A pinhole camera has the hole a distance 12 cm...Ch. 34 - Light travels from point A to point B via...Ch. 34 - A point object is 10 cm away from a plane mirror,...Ch. 34 - Show that the distance between an object and its...Ch. 34 - A luminous object and a screen are a fixed...Ch. 34 - An eraser of height 1.0 cm is placed 10.0 cm in...Ch. 34 - A peanut is placed 40 cm in front of a two-lens...Ch. 34 - A coin is placed 20 cm in front of a two-lens...Ch. 34 - An object is 20 cm to the left of a thin diverging...Ch. 34 - In Fig 34-58 a pinecone is at distance p1 = 1.0 m...Ch. 34 - One end of a long glass rod n = 1.5 is a convex...Ch. 34 - A short straight object of length L lies along the...Ch. 34 - Prove that if a plane mirror is rotated through an...Ch. 34 - An object is 30.0 cm from a spherical mirror,...Ch. 34 - A concave mirror has a radius of curvature of 24...Ch. 34 - A pepper seed is placed in front of a lens. The...Ch. 34 - The equation 1/p 1/i = 2/r for spherical mirrors...Ch. 34 - A small cup of green tea is positioned on the...Ch. 34 - A 20-mm-thick layer of water n = 1.33 floats on a...Ch. 34 - A millipede sits 1.0 m in front of the nearest...Ch. 34 - a Show that if the object O in Fig. 34-19c is...Ch. 34 - Isaac Newton, having convinced himself erroneously...Ch. 34 - A narrow beam of parallel light rays is incident...Ch. 34 - A corner reflector, much used in optical,...Ch. 34 - A cheese enchilada is 4.00 cm in front of a...Ch. 34 - A grasshopper hops to a point on the central axis...Ch. 34 - In Fig. 34-60, a sand grain is 3.00 cm from thin...Ch. 34 - Suppose the farthest distance a person can see...Ch. 34 - A simple magnifier of focal length f is placed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why are mutants used as test organisms in the Ames test?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
66. Astronauts use a centrifuge to simulate the acceleration of a rocket launch. The centrifuge takes 30 s to...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Draw the enol tautomers for each of the following compounds. For compounds that have more than one enol tautome...
Organic Chemistry (8th Edition)
Write an electron configuration for each element and the corresponding Lewis structure. Indicate which electron...
Introductory Chemistry (6th Edition)
30. You know that you sound better when you sing in the shower. This has to do with the amplification of freque...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. HF 5.0 µF 3.5 µF №8.0 μLE 1.5 µF Ι 0.75 μF 15 μFarrow_forwardthe answer is not 0.39 or 0.386arrow_forwardFind the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forward
- I do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forwardPart A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/Carrow_forward
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY