FUND.OF PHYSICS(LL)-PRINT COMP-W/ACCESS
11th Edition
ISBN: 9781119459170
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 43P
A movie camera with a (single) lens of focal length 75 mm takes a picture of a person standing 27 m away. If the person is 180 cm tall, what is the height of the image on the film?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?
No chatgpt pls will upvote
Correct answer
No chatgpt pls will upvote
Chapter 34 Solutions
FUND.OF PHYSICS(LL)-PRINT COMP-W/ACCESS
Ch. 34 - Figure 34-25 shows a fish and a fish stalker in...Ch. 34 - In Fig. 34-26, stick figure O stands in front of a...Ch. 34 - Figure 34-27 is an overhead view of a mirror maze...Ch. 34 - A penguin waddles along the central axis of a...Ch. 34 - When a T. rex pursues a jeep in the movie Jurassic...Ch. 34 - An object is placed against the center of a...Ch. 34 - The table details six variations of the basic...Ch. 34 - An object is placed against the center of a...Ch. 34 - Figure 34-30 shows four thin lenses, all of the...Ch. 34 - In Fig. 34-26, stick figure O stands in front of a...
Ch. 34 - Figure 34-31 shows a coordinate system in front of...Ch. 34 - You look through a camera towards an image of a...Ch. 34 - ILW A moth at about eye level is 10 cm in front of...Ch. 34 - In Fig. 34-32, an isotropic point source of light...Ch. 34 - Figure 34-33 shows an overhead view of a corridor...Ch. 34 - SSM WWW Figure 34-34 shows a small lightbulb...Ch. 34 - An object is moved along the central axis of a...Ch. 34 - A concave shaving mirror has a radius of curvature...Ch. 34 - An object is placed against the center of a...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22SSM 23, 29 More mirrors. Object...Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - GO Figure 34-37 gives the lateral magnification m...Ch. 34 - a A luminous point is moving at speed vo towards a...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - In Fig. 34-38, a beam of parallel light rays from...Ch. 34 - A glass sphere has radius R = 5.0 cm and index of...Ch. 34 - A lens is made of glass having an index of...Ch. 34 - Figure 34-40 gives the lateral magnification m of...Ch. 34 - A movie camera with a single lens of focal length...Ch. 34 - An object is placed against the center of a thin...Ch. 34 - You produce an image of the Sun on a screen, using...Ch. 34 - An object is placed against the center of a thin...Ch. 34 - SSM WWW A double-convex lens is to be made of...Ch. 34 - An object is moved along the central axis of a...Ch. 34 - SSM An illuminated slide is held 44 cm from a...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - In Fig. 34-44, a real inverted image I of an...Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - If the angular magnification of an astronomical...Ch. 34 - SSM In a microscope of the type shown in the Fig....Ch. 34 - Figure 34-46a shows the basic structure of an old...Ch. 34 - SSM Figure 34-47a shows the basic structure of a...Ch. 34 - An object is 10.0 mm from the objective of a...Ch. 34 - Someone with a near point Pn of 25 cm views a...Ch. 34 - An object is placed against the center of a...Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - SSM The formula 1/p 1/i = 1/f is called the...Ch. 34 - Figure 34-50a is an overhead view of two vertical...Ch. 34 - SSM Two thin lenses of focal lengths f1 and f2 are...Ch. 34 - Two plane mirrors are placed parallel to each...Ch. 34 - In Fig. 34-51, a box is somewhere at the left, on...Ch. 34 - In Fig. 34-52, an object is placed in front of a...Ch. 34 - SSM A fruit fly of height H sits in front of lens...Ch. 34 - You grind the lenses shown in Fig. 34-53 from flat...Ch. 34 - In Fig. 34-54, a fish watcher at point P watches a...Ch. 34 - A goldfish in a spherical fish bowl of radius R is...Ch. 34 - Figure 34-56 shows a beam expander made with two...Ch. 34 - You look down at a coin that lies at the bottom of...Ch. 34 - A pinhole camera has the hole a distance 12 cm...Ch. 34 - Light travels from point A to point B via...Ch. 34 - A point object is 10 cm away from a plane mirror,...Ch. 34 - Show that the distance between an object and its...Ch. 34 - A luminous object and a screen are a fixed...Ch. 34 - An eraser of height 1.0 cm is placed 10.0 cm in...Ch. 34 - A peanut is placed 40 cm in front of a two-lens...Ch. 34 - A coin is placed 20 cm in front of a two-lens...Ch. 34 - An object is 20 cm to the left of a thin diverging...Ch. 34 - In Fig 34-58 a pinecone is at distance p1 = 1.0 m...Ch. 34 - One end of a long glass rod n = 1.5 is a convex...Ch. 34 - A short straight object of length L lies along the...Ch. 34 - Prove that if a plane mirror is rotated through an...Ch. 34 - An object is 30.0 cm from a spherical mirror,...Ch. 34 - A concave mirror has a radius of curvature of 24...Ch. 34 - A pepper seed is placed in front of a lens. The...Ch. 34 - The equation 1/p 1/i = 2/r for spherical mirrors...Ch. 34 - A small cup of green tea is positioned on the...Ch. 34 - A 20-mm-thick layer of water n = 1.33 floats on a...Ch. 34 - A millipede sits 1.0 m in front of the nearest...Ch. 34 - a Show that if the object O in Fig. 34-19c is...Ch. 34 - Isaac Newton, having convinced himself erroneously...Ch. 34 - A narrow beam of parallel light rays is incident...Ch. 34 - A corner reflector, much used in optical,...Ch. 34 - A cheese enchilada is 4.00 cm in front of a...Ch. 34 - A grasshopper hops to a point on the central axis...Ch. 34 - In Fig. 34-60, a sand grain is 3.00 cm from thin...Ch. 34 - Suppose the farthest distance a person can see...Ch. 34 - A simple magnifier of focal length f is placed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
44. Calculate the ratio of CH3NH2 to CH3NH3Cl concentration required to create a buffer with pH = 10.24.
Chemistry: A Molecular Approach (4th Edition)
The air conditioner in a house or a car has a cooler that brings atmospheric air from 30Cto10C , both states at...
Fundamentals Of Thermodynamics
5. In a type of parakeet known as a “budgie,” feather color is controlled by two genes. A yellow pigment is syn...
Genetic Analysis: An Integrated Approach (3rd Edition)
EVOLUTION CONNECTION The percentages of naturally occurring elements making up the human body (see Table 2.1) a...
Campbell Biology (11th Edition)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forwardLab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
- Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardNo chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forward
- An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forwardROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forward
- SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY