Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 34, Problem 36AP
To determine
The reason for which the given situation is impossible.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
- Why is the following situation impossible? A laser beam strikes
one end of a slab of material of length L = 42.0 cm and
thickness t = 3.10 mm as shown in Figure P34.36 (not to
scale). It enters the material at the center of the left end,
striking it at an angle of incidence of 0 = 50.0°. The index of
refraction of the slab is n = 1.48. The light makes 85 inter-
nal reflections from the top and bottom of the slab before
exiting at the other end.
0
-L-
n
Figure P34.36
An optical cable in air is orientated horizontally. The cable has a core and a cladding layer. The index of refraction
for the core is 1.3 and the index of refraction for the cladding layer is 1.2. A light ray enters the center of the cable
with an incident angle ß=58°. The ray is subsequently refracted at the core-cladding interface and the cladding-air
interface. The angle between the exit ray and the cable wall is a. What is the angle a? The index of refraction of air
is 1.
←cladding
-core
The index of refraction of the core of a piece of fiber optic cable is 1.72. If the index of the
surrounding cladding is 1.41, what is the critical angle for total internal reflection for a light ray
in the core incident on the core-cladding interface?
a 55.1°
b 44.0⁰
c 49.6°
d 60.6°
Chapter 34 Solutions
Physics for Scientists and Engineers
Ch. 34.3 - Prob. 34.1QQCh. 34.4 - If beam is the incoming beam in Figure 34.10b,...Ch. 34.4 - Light passes from a material with index of...Ch. 34.6 - In photography, lenses in a camera use refraction...Ch. 34.7 - Prob. 34.5QQCh. 34 - Prob. 1PCh. 34 - The Apollo 11 astronauts set up a panel of...Ch. 34 - As a result of his observations, Ole Roemer...Ch. 34 - A dance hall is built without pillars and with a...Ch. 34 - You are working for an optical research company...
Ch. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Two flat, rectangular mirrors, both perpendicular...Ch. 34 - Prob. 9PCh. 34 - A ray of light strikes a flat block of glass (n =...Ch. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - A laser beam is incident at an angle of 30.0 from...Ch. 34 - A ray of light strikes the midpoint of one face of...Ch. 34 - When you look through a window, by what time...Ch. 34 - Light passes from air into flint glass at a...Ch. 34 - You have just installed a new bathroom in your...Ch. 34 - A triangular glass prism with apex angle 60.0 has...Ch. 34 - You are working at your university swimming...Ch. 34 - Prob. 20PCh. 34 - Prob. 21PCh. 34 - A submarine is 300 m horizontally from the shore...Ch. 34 - Prob. 23PCh. 34 - A light beam containing red and violet wavelengths...Ch. 34 - Prob. 25PCh. 34 - The speed of a water wave is described by v=gd,...Ch. 34 - For 589-nm light, calculate the critical angle for...Ch. 34 - Prob. 28PCh. 34 - A room contains air in which the speed of sound is...Ch. 34 - Prob. 30PCh. 34 - An optical fiber has an index of refraction n and...Ch. 34 - Consider a horizontal interface between air above...Ch. 34 - How many times will the incident beam in Figure...Ch. 34 - Consider a beam of light from the left entering a...Ch. 34 - Why is the following situation impossible? While...Ch. 34 - Prob. 36APCh. 34 - When light is incident normally on the interface...Ch. 34 - Refer to Problem 37 for its description of the...Ch. 34 - A light ray enters the atmosphere of the Earth and...Ch. 34 - A light ray enters the atmosphere of a planet and...Ch. 34 - Prob. 41APCh. 34 - Prob. 42APCh. 34 - Prob. 43APCh. 34 - Prob. 44APCh. 34 - Prob. 45APCh. 34 - As sunlight enters the Earths atmosphere, it...Ch. 34 - A ray of light passes from air into water. For its...Ch. 34 - Prob. 48APCh. 34 - Prob. 49APCh. 34 - Figure P34.50 shows a top view of a square...Ch. 34 - Prob. 51APCh. 34 - Prob. 52CPCh. 34 - Prob. 53CPCh. 34 - Pierre de Fermat (16011665) showed that whenever...Ch. 34 - Prob. 55CPCh. 34 - Suppose a luminous sphere of radius R1 (such as...Ch. 34 - Prob. 57CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardA ray of light originates inside the glass filled with water, as shown in the figure. It travels through water, in incident on the glass side, and emerges into the air. Ignore any partial reflections. What is the values of angles Q? Water n=1.33 370 Air Glass n = 1.0 n= 1.5 32.25° 67.16° 53.17° 35.89°arrow_forwardThe figure below shows the path of a beam of light through several layers with different indices of refraction. (Assume n = 1.08.) P0₂ n = 1.60 n = 1.40 n = 1.20 114 (a) If 8₁ = 36.0°, what is the angle 8₂ of the emerging beam? (b) What is the smallest incident angle 0₁ to have total internal reflection at the surface between the medium with n = 1.20 and the medium with n = 1.08?arrow_forward
- Light of wavelength 471 nm is incident on the face of a silica prism at an angle of θ1 = 75◦ (with respect to the normal to the surface). The apex angle of the prism is φ = 57.5◦. Given: The value of the index of refraction for silica is n = 1.455. Find the angle of refraction at this first surface. Answer in units of degrees. Find the angle of incidence at the second surface. Answer in units of degrees. Find the angle of refraction at the second surface. Answer in units of degrees. Find the angle between the incident and emerging rays. Answer in units of degrees.arrow_forwardA diamond in air is illuminated with white light. On one particular facet, the angle of incidence is 32.50°. Inside the diamond, red light (λ = 660.0 nm in vacuum) is refracted at 10.48° with respect to the normal; blue light (λ = 470.0 nm in vacuum) is refracted at 10.33°. What is the index of refraction for red light in diamond? What is the index of refraction for blue light in diamond? What is the ratio of the speed of red light to the speed of blue light in diamond?arrow_forwardA light ray enters a material from air at at an angle of incidence of 30.0°. The ray continues traveling within the material at an angle of 23.0° to the normal. What is the critical angle for this material when it is surrounded by air? (nair = 1.0) 51.4° 48.4° 36.1° 53° O 54.2°arrow_forward
- Three sheets of plastic have unknown indices of refraction. Sheet 1 is placed on top of sheet 2, and a laser beam is directed onto the sheets from above so that it strikes the interface at an angle of 26.6deg with the normal. The refracted beam in sheet 2 makes an angle of 31.4deg with the normal. The experiment is repeated with sheet 3 on top of sheet 2 and, with the same angle of incidence, the refracted beam makes an angle of 36.8deg with the normal. If the experiment is repeated again with sheet 1 on top of sheet 3, what is the expected angle of refraction in sheet 3? Assume the same angle of incidence.arrow_forwardA narrow beam of light with wavelengths from 450 nm to 700 nm is incident perpendicular to one face of a prism made of crown glass, for which the index of refraction ranges from n = 1.533 to n = 1.517 for those wavelengths. The light strikes the opposite side of the prism at an angle of 40°. What is the angular spread of the beam as it leaves the prism?arrow_forwardThree sheets of plastic have unknown indices of refraction. Sheet 1 is placed on top of sheet 2, and a laser beam is directed onto the sheets from above so that it strikes the interface at an angle of 26.50 with the normal. The refracted beam in sheet 2 makes an angle of 31.70 with the normal. The experiment is repeated with sheet 3 on top of sheet 2, and with the same angle of incidence, the refracted beam makes an angle of 36.70 with the normal. If the experiment is repeated again with sheet 1 on top of sheet 3, determine the expected angle of refraction in sheet 3? Assume the same angle of incidence. 2. A 50 g ice cube at 00C is heated until 45 g has become water at 1000C and 5 g has become steam at 1000C. Determine the amount of heat that can be added to accomplish this?arrow_forward
- The critical angle for total internal reflection at a turpentine-air interface is 42.8°. A ray traveling in the liquid has an angle of incidence of 32.0° at the interface. What angle does the refracted ray in air make with the normal? O51.3° O 14.7° O 53.0° O 23.8° here to search Larrow_forwardThe figure below shows the path of a beam of light through several layers with different indices of refraction. (Assume n = 1.02.) e₁ n = 1.60 02 n = 1.40 n = 1.20 MA (a) If ₁ = 28.0°, what is the angle 2 of the emerging beam? o 1 (b) What is the smallest incident angle ₁ to have total internal reflection at the surface between the medium with n = 1.20 and the medium with Па = 1.02?arrow_forwardA 1.00-cm-thick by 4.00-cm-long glass plate is made up of two fused prisms. The top prism has an index of refraction of 1.486 and the bottom has an index of refraction of 1.878. A light ray is incident on the top face as shown in the figure to the right. The reflected ray A is completely linearly polarized. Determine the exit angle of this ray that pass through the prisms.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning