Concept explainers
The minimum angular speed of the wheel for this experiment.
Answer to Problem 1P
Explanation of Solution
Given info: The distance between the light source and the mirror was
The formula to calculate the angular speed of the wheel is,
Here,
The formula to calculate
Here,
Substitute
The formula to calculate
Here,
Substitute
Substitute
Conclusion:
Therefore, the minimum angular speed of the wheel is
Want to see more full solutions like this?
Chapter 34 Solutions
Physics for Scientists and Engineers
- What is the answer for question 9?arrow_forwardThe speed of light in a certain material is measured to be 2.2 × 108 m/s. What is the index of refraction of this material? (c = 3.0 × 108 m/s)arrow_forwardWhen a ray of light changes media , it will refract (bend). With angles being measured from the normal, the amount of refraction can be found using Snell's Law . Traveling through any medium light will have a speed given by the equation shown where n represents the index of refraction and is the speed of light in a vacuum (3 * 10 ^ 8 * m/c) . A) In the picture of refraction shown which index of refraction is larger n1 or n2 B)In what medium does the lightbeam shown travel faster C) Measure the angles, Assuming n1 refers to vaccum what is the value of n2? How fast does light travel within n2?arrow_forward
- In a Michelson-type experiment, the path shown by a beam of light when the eight-sided mirror is at rest is shown. The detector indicates a maximum signal. The distance between the eight sided mirror and the stationary mirror is 46.62 km. As the eight-sided mirror begins to rotate, the beam no longer follows this path and the detector indicates a decreased signal. Determine the frequency of rotation for which the detector will first indicate a maximum signal. (answer in Hz and round to the nearest whole number) Your Answer:arrow_forwardThe speed of light in a particular type of glass is 1.72 x 10^8 (10 to the eighth power) m/s. What is the index of refraction of the glass?arrow_forwardA thick piece of Lucite (n = 1.50) has the shape of a quarter circle of radius R = 12.8 cm as shown in the side view of the figure below. A light ray traveling in air parallel to the base of the Lucite is incident at a distance h = 6.60 cm above the base and emerges out of the Lucite at an angle e with the horizontal. Determine the value of 8. Incoming ray Outgoing ray Rarrow_forward
- Calculate the speed of light in fused quartz. What percent is this of the speed of light in vacuum? The index of refraction of a fused quartz is n = 1.458. Express your answer in 2 decimal places.arrow_forwardIn an experiment designed to measure the speed of light, a laser is aimed at a mirror that is 56.0 km due north. A detector is placed 146 m due east of the laser. The mirror is to be aligned so that light from the laser refelects into the detector. (a) When properly aligned, what angle should the normal to the surface of the mirror make with due south? (b) Suppose the mirror is misaligned, so that the actual angle between the normal to the surface and due south is too large by 0.0050°. By how many meters (due east) will the reflected ray miss the detector? (a) Number i (b) Number i Units Mirror Units Laser ◄► W N S E Detectorarrow_forwardIn an experiment designed to measure the speed of light, a laser is aimed at a mirror that is 56.0 km due north. A detector is placed 146 m due east of the laser. The mirror is to be aligned so that light from the laser refelects into the detector. (a) When properly aligned, what angle should the normal to the surface of the mirror make with due south? (b) Suppose the mirror is misaligned, so that the actual angle between the normal to the surface and due south is too large by 0.0050°. By how many meters (due east) will the reflected ray miss the detector? (a) Number 0.074688971 (b) Number i 10.3819 Mirror Laser Units (degrees) Units m ◄► W N S E Detectorarrow_forward
- Snell' Law describes the relationships between the paths taken by the light rays in terms of the index of refraction and the angles of incidence and refraction: n1sin01 = n2sin02. Light is incident on an equilateral glass prism at a 45 degree angle to one face. The index of refraction of the glass prism is 1.58. Using Snell's Law, 02 is equal to 45° 04 02 03arrow_forwardIn the figure, light from ray A refracts from material 1 (n₁ = 1.73) into a thin layer of material 2 (n2 = 1.80), crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3 (n3 = 1.40). (a) What is the value of incident angle BA? (b) If 8A is decreased, does part of the light refract into material 3? Light from ray B refracts from material 1 into the thin layer, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (c) What is the value of incident angle Og? (d) If Og is decreased, does part of the light refract into material 3? OB I ng no 121arrow_forwardIn an experiment designed to measure the speed of light, a laser is aimed at a mirror that is 53.0 km due north. A detector is placed 110 m due east of the laser. The mirror is to be aligned so that light from the laser refelects into the detector. (a) When properly aligned, what angle should the normal to the surface of the mirror make with due south? (b) Suppose the mirror is misaligned, so that the actual angle between the normal to the surface and due south is too large by 0.0020%. By how many meters (due east) will the reflected ray miss the detector? (a) Number 1 0.059 (b) Number Mirror Laser Units (degrees) Units m E Detectorarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON