Review. Model the electromagnetic wave in a microwave oven as a plane traveling wave moving to the left, with an intensity of 25.0 kW/m 2 . An oven contains two cubical containers of small mass, each full of water. One has an edge length of 6.00 cm, and the other, 12.0 cm. Energy falls perpendicularly on one face of each container. The water in the smaller container absorbs 70.0% of the energy that falls on it. The water in the larger container absorbs 91.0%. That is, the fraction 0.300 of the incoming microwave energy passes through a 6.00-cm thickness of water, and the fraction (0.300)(0.300) = 0.090 passes through a 12.0-cm thickness. Assume a negligible amount of energy leaves either container by heat. Find the temperature change of the water in each container over a time interval of 480 s.
Review. Model the electromagnetic wave in a microwave oven as a plane traveling wave moving to the left, with an intensity of 25.0 kW/m 2 . An oven contains two cubical containers of small mass, each full of water. One has an edge length of 6.00 cm, and the other, 12.0 cm. Energy falls perpendicularly on one face of each container. The water in the smaller container absorbs 70.0% of the energy that falls on it. The water in the larger container absorbs 91.0%. That is, the fraction 0.300 of the incoming microwave energy passes through a 6.00-cm thickness of water, and the fraction (0.300)(0.300) = 0.090 passes through a 12.0-cm thickness. Assume a negligible amount of energy leaves either container by heat. Find the temperature change of the water in each container over a time interval of 480 s.
Solution Summary: The author explains the temperature change of the water in each container over a time interval of 480s.
Review. Model the electromagnetic wave in a microwave oven as a plane traveling wave moving to the left, with an intensity of 25.0 kW/m2. An oven contains two cubical containers of small mass, each full of water. One has an edge length of 6.00 cm, and the other, 12.0 cm. Energy falls perpendicularly on one face of each container. The water in the smaller container absorbs 70.0% of the energy that falls on it. The water in the larger container absorbs 91.0%. That is, the fraction 0.300 of the incoming microwave energy passes through a 6.00-cm thickness of water, and the fraction (0.300)(0.300) = 0.090 passes through a 12.0-cm thickness. Assume a negligible amount of energy leaves either container by heat. Find the temperature change of the water in each container over a time interval of 480 s.
Interaction between an electric field and a magnetic field.
What is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter?
0.445
ΧΩ
Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring).
d.
Ag
dFe
= 2.47
×
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.