
Concept explainers
(a)
The radius of the hemisphere.
(a)

Answer to Problem 34.73AP
Explanation of Solution
Given info: The weight of the black cat is
Explanation:
The formula to calculate the total mass is,
Here,
Substitute
The formula to calculate the mass of the hemisphere is,
Here,
Substitute
Conclusion:
Therefore, the radius of the hemisphere is
(b)
The area of the curved surface.
(b)

Answer to Problem 34.73AP
Explanation of Solution
Given info: The weight of the black cat is
Explanation:
The formula to calculate the area is,
Substitute
Conclusion:
Therefore, the area of the curved surface is
(c)
The power emitted by the cats.
(c)

Answer to Problem 34.73AP
Explanation of Solution
Given info: The weight of the black cat is
Explanation:
The formula to calculate the power emitted is,
Here,
Substitute
Conclusion:
Therefore, the power emitted by the cats is
(d)
The intensity of radiation at the surface.
(d)

Answer to Problem 34.73AP
Explanation of Solution
Given info: The weight of the black cat is
Explanation:
The formula to calculate the intensity of radiation is,
Substitute
Conclusion:
Therefore, the intensity of radiation at the surface is
(e)
The amplitude of electric field in the electromagnetic wave.
(e)

Answer to Problem 34.73AP
Explanation of Solution
Given info: The weight of the black cat is
Explanation:
The formula to calculate the amplitude of the electric field is,
Here,
Substitute
Thus, the amplitude of electric field in the electromagnetic wave is
Conclusion:
Therefore, the amplitude of electric field in the electromagnetic wave is
(f)
The amplitude of magnetic field in the electromagnetic wave.
(f)

Answer to Problem 34.73AP
Explanation of Solution
Given info: The weight of the black cat is
Explanation:
The formula to calculate the amplitude of the magnetic field is,
Substitute
Conclusion:
Therefore, the amplitude of magnetic field in the electromagnetic wave is
(g)
The total power radiated by the family of cat.
(g)

Answer to Problem 34.73AP
Explanation of Solution
Given info: The weight of the black cat is
Explanation:
The formula to calculate the mass of the hemisphere is,
Here,
Substitute
The formula to calculate the power radiated by the kittens is,
Here,
Substitute
The formula to calculate the mass of the hemisphere is,
Here,
Substitute
The formula to calculate the power radiated by the cat is,
Here,
Substitute
The formula to calculate the total power radiated by the family of cat is,
Substitute
Conclusion:
Therefore, the total power radiated by the family of cat is
Want to see more full solutions like this?
Chapter 34 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Mick and Rick are twins born on Earth in the year 2175. Rick grows up to be an Earth-bound robotics technician while Mick becomes an intergalactic astronaut. Mick leaves the Earth on his first space mission in the year 2200 and travels, according to his clock, for 10 years at a speed of 0.75c. Unfortunately, at this point in his journey, the structure of his ship undergoes mechanical breakdown and the ship explodes. How old is Rick when his brother dies?arrow_forwardHi, I have canceled, why did you charge me again?arrow_forwardNo chatgpt pls will upvotearrow_forward
- For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forwardWhat are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forward
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





