![Vector Mechanics for Engineers: Statics](https://www.bartleby.com/isbn_cover_images/9781259977244/9781259977244_largeCoverImage.jpg)
Concept explainers
(a)
The resultant force.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 3.139P
The resultant force is
Explanation of Solution
Write the equation of the distance between AC.
Here, the distance between AC is
Write the equation of the distance between BD.
Here, the distance between BD is
Write the equation of the momentum about AC.
Here, the momentum about AC is
Write the equation of the momentum about BD.
Here, the momentum about BD is
Write the equation of resultant force.
Here, the resultant force is
Conclusion:
Substitute,
Substitute,
Substitute,
Substitute,
Substitute,
The magnitude of the resultant force,
Thus, the resultant force is
(b)
The pitch of the wrench.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 3.139P
The pitch of the wrench is
Explanation of Solution
Write the equation of pitch of the wrench.
Here, the pitch of the wrench is
Since, the
Here, the constant is
Write the expression for the constant is,
Write the equation of momentum.
Here, the momentum is
Rewrite the expression for the momentum of the wrench is,
Conclusion:
Substitute,
Substitute,
Thus, the pitch of the wrench is
(c)
The point at which the axis of wrench intersects the yz-plane.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 3.139P
The axis of wrench intersects the yz-plane at
Explanation of Solution
The diagram for the force-couple system is given below:
Refer fig 1,
Write the equation for the force couple system for the wrench.
Here, the momentum is
Write the expression for the momentum at which the wrench intersects the xz-plane.
Here, the position vector is
Write the expression for the position vector is,
Here, the coordinates are
Conclusion:
Substitute,
Substitute,
Substitute,
Comparing the coefficients of the y and z components both sides,
Therefore, the axis of wrench intersects the yz-plane at
Want to see more full solutions like this?
Chapter 3 Solutions
Vector Mechanics for Engineers: Statics
- Draw top, side, front view With pen(cil) and paper Multi view drawing and handwriting all of itarrow_forwardA wheel of diameter 150.0 mm and width 37.00 mm carrying a load 2.200 kN rolls on a flat rail. Take the wheel material as steel and the rail material as cast iron. Assume the figure given, which is based on a Poisson's ratio of 0.3, is applicable to estimate the depth at which the maximum shear stress occurs for these materials. At this critical depth, calculate the Hertzian stresses σr, σy, σz, and Tmax for the wheel. 1.0 0.8 0, т Ratio of stress to Pmax 0.4 0.6 90 69 0.2 0.5b b 1.5b Tmax 2b Distance from contact surface The Hertizian stresses are as follows: 02 = or = -23.8 psi for the wheel =| necessary.) σy for the wheel =| MPa σz for the wheel = MPa V4 for the wheel = | MPa 2.5b ཡི 3b MPa (Include a minus sign ifarrow_forwardOnly question 3arrow_forward
- In cold isostatic pressing, the mold is most typically made of which one of the following: thermosetting polymer tool steel sheet metal textile rubberarrow_forwardThe coefficient of friction between the part and the tool in cold working tends to be: lower higher no different relative to its value in hot workingarrow_forwardThe force F={25i−45j+15k}F={25i−45j+15k} lblb acts at the end A of the pipe assembly shown in (Figure 1). Determine the magnitude of the component F1 which acts along the member AB. Determine the magnitude of the component F2 which acts perpendicular to the AB.arrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305501607/9781305501607_smallCoverImage.gif)