![An Introduction to Physical Science](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_largeCoverImage.gif)
An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.4, Problem 1PQ
What’s the difference between an action and a reaction?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
Τ
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
T
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
■ Review | Constants
A cylinder with a movable piston contains 3.75 mol
of N2 gas (assumed to behave like an ideal gas).
Part A
The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in
temperature.
ΜΕ ΑΣΦ
AT =
Submit
Request Answer
Part B
?
K
Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while
remaining at constant pressure. Calculate the temperature change.
AT =
Π ΑΣΦ
Submit
Request Answer
Provide Feedback
?
K
Next
Chapter 3 Solutions
An Introduction to Physical Science
Ch. 3.1 - Does a force always produce motion?Ch. 3.1 - What is the condition for motion when more than...Ch. 3.2 - If you were moving with a constant velocity in...Ch. 3.2 - How can the inertias of objects be compared?Ch. 3.3 - How are force and motion related?Ch. 3.3 - Which is generally greater, static friction or...Ch. 3.3 - Prob. 3.1CECh. 3.3 - On the surface of Mars, the acceleration due to...Ch. 3.4 - Whats the difference between an action and a...Ch. 3.4 - Prob. 2PQ
Ch. 3.5 - What keeps the Moon in orbit around the Earth?Ch. 3.5 - Prob. 2PQCh. 3.5 - Prob. 3.3CECh. 3.6 - Prob. 1PQCh. 3.6 - Prob. 2PQCh. 3.7 - When is the linear momentum of a system conserved?Ch. 3.7 - Prob. 2PQCh. 3.7 - Suppose you were not given the values of the...Ch. 3.7 - Prob. 3.5CECh. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - Prob. FMCh. 3 - Prob. GMCh. 3 - Prob. HMCh. 3 - Prob. IMCh. 3 - Prob. JMCh. 3 - Prob. KMCh. 3 - Prob. LMCh. 3 - Prob. MMCh. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - Prob. PMCh. 3 - Prob. QMCh. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - Prob. SMCh. 3 - A net force ___. (3.1) (a) can produce motion (b)...Ch. 3 - What is a possible state of an object in the...Ch. 3 - What term refers to the tendency of an object to...Ch. 3 - A net force can produce ___. (3.3) (a) an...Ch. 3 - According to Newtons second law of motion, when an...Ch. 3 - Mass is related to an objects ___. (3.3) (a)...Ch. 3 - Prob. 7MCCh. 3 - Which is true of the force pair of Newtons third...Ch. 3 - Which is true about the acceleration due to...Ch. 3 - What is true about the constant G? (3.5) (a) It is...Ch. 3 - A childs toy floats in a swimming pool. The...Ch. 3 - If a submerged object displaces an amount of...Ch. 3 - If a submerged object displaces a volume of liquid...Ch. 3 - A change in linear momentum requires which of the...Ch. 3 - Angular momentum is conserved in the absence of...Ch. 3 - A force is a quantity that is ___ of producing...Ch. 3 - Forces are ___ quantities. (3.1)Ch. 3 - Prob. 3FIBCh. 3 - Prob. 4FIBCh. 3 - The inertia of an object is related to its ___....Ch. 3 - Prob. 6FIBCh. 3 - Prob. 7FIBCh. 3 - Prob. 8FIBCh. 3 - Prob. 9FIBCh. 3 - Prob. 10FIBCh. 3 - Prob. 11FIBCh. 3 - Milk is ___ dense than the cream that floats on...Ch. 3 - The total linear momentum is not conserved if...Ch. 3 - Prob. 14FIBCh. 3 - Prob. 1SACh. 3 - Prob. 2SACh. 3 - Consider a child holding a helium balloon in a...Ch. 3 - An old party trick is to pull a tablecloth out...Ch. 3 - Prob. 5SACh. 3 - When a paper towel is torn from a roll on a rack,...Ch. 3 - It is said that Newtons first law can be derived...Ch. 3 - Can an object be at rest if forces are being...Ch. 3 - Prob. 9SACh. 3 - What is the unbalanced force acting on a moving...Ch. 3 - The coefficient of kinetic friction is generally...Ch. 3 - A 10-lb rock and a 1-lb rock are dropped...Ch. 3 - When a rocket blasts off, is it the fiery exhaust...Ch. 3 - There is an equal and opposite reaction for every...Ch. 3 - When a person pushes on a wall, the wall pushes on...Ch. 3 - Two masses are attached to a spring scale as shown...Ch. 3 - Prob. 17SACh. 3 - The gravitational force is said to have an...Ch. 3 - Explain why the acceleration due to gravity on the...Ch. 3 - An astronaut has a mass of 70 kg when measured on...Ch. 3 - Prob. 21SACh. 3 - In Chapter 1.6 in the discussion of the...Ch. 3 - What is a major consideration in constructing a...Ch. 3 - Prob. 24SACh. 3 - Prob. 25SACh. 3 - Is it easier for a large person to float in a lake...Ch. 3 - Prob. 27SACh. 3 - Prob. 28SACh. 3 - Explain how the conservation of linear momentum...Ch. 3 - Prob. 30SACh. 3 - When a high diver in a swimming event springs from...Ch. 3 - Visualize the connections for the descriptions of...Ch. 3 - Astronauts walking on the Moon are seen bounding...Ch. 3 - A person places a bathroom scale in the center of...Ch. 3 - Prob. 3AYKCh. 3 - Prob. 4AYKCh. 3 - In a washing machine, water is extracted from...Ch. 3 - When you push on a heavy swinging door to go into...Ch. 3 - When unable to loosen the lug nut on an automobile...Ch. 3 - What is the net force of a 5.0-N force and an...Ch. 3 - A horizontal force of 250 N is applied to a...Ch. 3 - Determine the net force necessary to give an...Ch. 3 - A force of 2.1 N is exerted on a 7.0-g rifle...Ch. 3 - A 1000-kg automobile is pulled by a horizontal tow...Ch. 3 - A 6.0-N net force is applied to a 15-kg object....Ch. 3 - What is the weight in newtons of a 6.0-kg package...Ch. 3 - What is the force in newtons acting on a 4.0-kg...Ch. 3 - (a) What is the weight in newtons of a 120-lb...Ch. 3 - A 75-kg person is standing on a scale in an...Ch. 3 - Two 3.0-kg physical science textbooks on a...Ch. 3 - (a) What is the force of gravity between two...Ch. 3 - How would the force of gravity between two masses...Ch. 3 - The separation distance between two 1.0-kg masses...Ch. 3 - (a) Determine the weight on the Moon of a person...Ch. 3 - Suppose an astronaut has landed on Mars. Fully...Ch. 3 - A childs cubic play block has a mass of 120 g and...Ch. 3 - A ball with a radius of 8.00 cm and a mass of 600...Ch. 3 - Calculate the linear momentum of a pickup truck...Ch. 3 - A small car with a mass of 900 kg travels...Ch. 3 - Two ice skaters stand together as illustrated in ...Ch. 3 - For the couple in Fig. 3.28, suppose you were told...Ch. 3 - A comet goes around the Sun in an elliptical...Ch. 3 - Taking the density of air to be 1.29 kg/m3, what...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC) into a rectangle, bringing them together from an initial situation where they were all an infinite distance away from each other. Find the electric potential at point "A" (marked by the X) and tell me how much work it would require to bring a +10.0 μC charge to point A if it started an infinite distance away (assume that the other three charges remains fixed). 300 mm -4 UC "A" 0.400 mm +6 UC +3 UC 5. It's Friday night, and you've got big party plans. What will you do? Why, make a capacitor, of course! You use aluminum foil as the plates, and since a standard roll of aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by 30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125 mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If you connect it to a 12 V battery, how much charge is stored on either plate? =arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forwardA-e pleasearrow_forward
- Two moles of carbon monoxide (CO) start at a pressure of 1.4 atm and a volume of 35 liters. The gas is then compressed adiabatically to 1/3 this volume. Assume that the gas may be treated as ideal. Part A What is the change in the internal energy of the gas? Express your answer using two significant figures. ΕΠΙ ΑΣΦ AU = Submit Request Answer Part B Does the internal energy increase or decrease? internal energy increases internal energy decreases Submit Request Answer Part C ? J Does the temperature of the gas increase or decrease during this process? temperature of the gas increases temperature of the gas decreases Submit Request Answerarrow_forwardYour answer is partially correct. Two small objects, A and B, are fixed in place and separated by 2.98 cm in a vacuum. Object A has a charge of +0.776 μC, and object B has a charge of -0.776 μC. How many electrons must be removed from A and put onto B to make the electrostatic force that acts on each object an attractive force whose magnitude is 12.4 N? e (mea is the es a co le E o ussian Number Tevtheel ed Media ! Units No units → answe Tr2Earrow_forward4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forward
- 4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forwardplease solve and answer the question correctly. Thank you!!arrow_forwardNo chatgpt pls will upvotearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_smallCoverImage.gif)
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337515863/9781337515863_smallCoverImage.jpg)
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY