An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 10FIB
To determine
To fill in the blank:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
m
C
A block of mass m slides down a ramp of height hand
collides with an identical block that is initially at rest.
The two blocks stick together and travel around a loop of
radius R without losing contact with the track. Point A is
at the top of the loop, point B is at the end of a horizon-
tal diameter, and point C is at the bottom of the loop, as
shown in the figure above. Assume that friction between
the track and blocks is negligible.
(a) The dots below represent the two connected
blocks at points A, B, and C. Draw free-body dia-
grams showing and labeling the forces (not com
ponents) exerted on the blocks at each position.
Draw the relative lengths of all vectors to reflect
the relative magnitude of the forces.
Point A
Point B
Point C
(b) For each of the following, derive an expression in
terms of m, h, R, and fundamental constants.
i. The speed of moving block at the bottom of
the ramp, just before it contacts the stationary
block
ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown.
Assume the positive direction is upward.
Velocity (m/s)
3.0
2.5
2.0
1.5
1.0
0.5
0
0
5.0
10
15
20
25
Time (s)
(a) Briefly describe the motion of the elevator.
Justify your description with reference to the
graph.
(b) Assume the elevator starts from an initial position
of y = 0 at t=0. Deriving any numerical values
you
need from the graph:
i. Write an equation for the position as a
function of time for the elevator from
t=0 to t = 3.0 seconds.
ii. Write an equation for the position as a
function of time for the elevator from t = 3.0
seconds to t = 19 seconds.
(c) A student of weight mg gets on the elevator
and rides the elevator during the time interval
shown in the graph. Consider the force of con-
tact, F, between the floor and the student. How
Justify your answer with reference to the graph
does F compare to mg at the following times?
and your equations above.
i. = 1.0 s
ii. = 10.0 s
Students are asked to use circular motion to measure the
coefficient of static friction between two materials. They
have a round turntable with a surface made from one of
the materials, for which they can vary the speed of rotation.
They also have a small block of mass m made from the sec-
ond material. A rough sketch of the apparatus is shown in
the figure below. Additionally they have equipment normally
found in a physics classroom.
Axis
m
(a) Briefly describe a procedure that would allow you
to use this apparatus to calculate the coefficient of
static friction, u.
(b) Based on your procedure, determine how to
analyze the data collected to calculate the
coefficient of friction.
(c) One group of students collects the following
data.
r (m)
fm (rev/s)
0.050
1.30
0.10
0.88
0.15
0.74
0.20
0.61
0.25
0.58
i. Use the empty spaces in the table as needed to
calculate quantities that would allow you to
use the slope of a line graph to calculate the
coefficient of friction, providing labels with…
Chapter 3 Solutions
An Introduction to Physical Science
Ch. 3.1 - Does a force always produce motion?Ch. 3.1 - What is the condition for motion when more than...Ch. 3.2 - If you were moving with a constant velocity in...Ch. 3.2 - How can the inertias of objects be compared?Ch. 3.3 - How are force and motion related?Ch. 3.3 - Which is generally greater, static friction or...Ch. 3.3 - Prob. 3.1CECh. 3.3 - On the surface of Mars, the acceleration due to...Ch. 3.4 - Whats the difference between an action and a...Ch. 3.4 - Prob. 2PQ
Ch. 3.5 - What keeps the Moon in orbit around the Earth?Ch. 3.5 - Prob. 2PQCh. 3.5 - Prob. 3.3CECh. 3.6 - Prob. 1PQCh. 3.6 - Prob. 2PQCh. 3.7 - When is the linear momentum of a system conserved?Ch. 3.7 - Prob. 2PQCh. 3.7 - Suppose you were not given the values of the...Ch. 3.7 - Prob. 3.5CECh. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - Prob. FMCh. 3 - Prob. GMCh. 3 - Prob. HMCh. 3 - Prob. IMCh. 3 - Prob. JMCh. 3 - Prob. KMCh. 3 - Prob. LMCh. 3 - Prob. MMCh. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - Prob. PMCh. 3 - Prob. QMCh. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - Prob. SMCh. 3 - A net force ___. (3.1) (a) can produce motion (b)...Ch. 3 - What is a possible state of an object in the...Ch. 3 - What term refers to the tendency of an object to...Ch. 3 - A net force can produce ___. (3.3) (a) an...Ch. 3 - According to Newtons second law of motion, when an...Ch. 3 - Mass is related to an objects ___. (3.3) (a)...Ch. 3 - Prob. 7MCCh. 3 - Which is true of the force pair of Newtons third...Ch. 3 - Which is true about the acceleration due to...Ch. 3 - What is true about the constant G? (3.5) (a) It is...Ch. 3 - A childs toy floats in a swimming pool. The...Ch. 3 - If a submerged object displaces an amount of...Ch. 3 - If a submerged object displaces a volume of liquid...Ch. 3 - A change in linear momentum requires which of the...Ch. 3 - Angular momentum is conserved in the absence of...Ch. 3 - A force is a quantity that is ___ of producing...Ch. 3 - Forces are ___ quantities. (3.1)Ch. 3 - Prob. 3FIBCh. 3 - Prob. 4FIBCh. 3 - The inertia of an object is related to its ___....Ch. 3 - Prob. 6FIBCh. 3 - Prob. 7FIBCh. 3 - Prob. 8FIBCh. 3 - Prob. 9FIBCh. 3 - Prob. 10FIBCh. 3 - Prob. 11FIBCh. 3 - Milk is ___ dense than the cream that floats on...Ch. 3 - The total linear momentum is not conserved if...Ch. 3 - Prob. 14FIBCh. 3 - Prob. 1SACh. 3 - Prob. 2SACh. 3 - Consider a child holding a helium balloon in a...Ch. 3 - An old party trick is to pull a tablecloth out...Ch. 3 - Prob. 5SACh. 3 - When a paper towel is torn from a roll on a rack,...Ch. 3 - It is said that Newtons first law can be derived...Ch. 3 - Can an object be at rest if forces are being...Ch. 3 - Prob. 9SACh. 3 - What is the unbalanced force acting on a moving...Ch. 3 - The coefficient of kinetic friction is generally...Ch. 3 - A 10-lb rock and a 1-lb rock are dropped...Ch. 3 - When a rocket blasts off, is it the fiery exhaust...Ch. 3 - There is an equal and opposite reaction for every...Ch. 3 - When a person pushes on a wall, the wall pushes on...Ch. 3 - Two masses are attached to a spring scale as shown...Ch. 3 - Prob. 17SACh. 3 - The gravitational force is said to have an...Ch. 3 - Explain why the acceleration due to gravity on the...Ch. 3 - An astronaut has a mass of 70 kg when measured on...Ch. 3 - Prob. 21SACh. 3 - In Chapter 1.6 in the discussion of the...Ch. 3 - What is a major consideration in constructing a...Ch. 3 - Prob. 24SACh. 3 - Prob. 25SACh. 3 - Is it easier for a large person to float in a lake...Ch. 3 - Prob. 27SACh. 3 - Prob. 28SACh. 3 - Explain how the conservation of linear momentum...Ch. 3 - Prob. 30SACh. 3 - When a high diver in a swimming event springs from...Ch. 3 - Visualize the connections for the descriptions of...Ch. 3 - Astronauts walking on the Moon are seen bounding...Ch. 3 - A person places a bathroom scale in the center of...Ch. 3 - Prob. 3AYKCh. 3 - Prob. 4AYKCh. 3 - In a washing machine, water is extracted from...Ch. 3 - When you push on a heavy swinging door to go into...Ch. 3 - When unable to loosen the lug nut on an automobile...Ch. 3 - What is the net force of a 5.0-N force and an...Ch. 3 - A horizontal force of 250 N is applied to a...Ch. 3 - Determine the net force necessary to give an...Ch. 3 - A force of 2.1 N is exerted on a 7.0-g rifle...Ch. 3 - A 1000-kg automobile is pulled by a horizontal tow...Ch. 3 - A 6.0-N net force is applied to a 15-kg object....Ch. 3 - What is the weight in newtons of a 6.0-kg package...Ch. 3 - What is the force in newtons acting on a 4.0-kg...Ch. 3 - (a) What is the weight in newtons of a 120-lb...Ch. 3 - A 75-kg person is standing on a scale in an...Ch. 3 - Two 3.0-kg physical science textbooks on a...Ch. 3 - (a) What is the force of gravity between two...Ch. 3 - How would the force of gravity between two masses...Ch. 3 - The separation distance between two 1.0-kg masses...Ch. 3 - (a) Determine the weight on the Moon of a person...Ch. 3 - Suppose an astronaut has landed on Mars. Fully...Ch. 3 - A childs cubic play block has a mass of 120 g and...Ch. 3 - A ball with a radius of 8.00 cm and a mass of 600...Ch. 3 - Calculate the linear momentum of a pickup truck...Ch. 3 - A small car with a mass of 900 kg travels...Ch. 3 - Two ice skaters stand together as illustrated in ...Ch. 3 - For the couple in Fig. 3.28, suppose you were told...Ch. 3 - A comet goes around the Sun in an elliptical...Ch. 3 - Taking the density of air to be 1.29 kg/m3, what...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardOnly Part C.) is necessaryarrow_forward
- Only Part B.) is necessaryarrow_forwardA (3.60 m) 30.0°- 70.0° x B (2.40 m)arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- fine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward4) Three point charges of magnitude Q1 = +2.0 μC, Q2 = +3.0 μС, Q3 = = +4.0 μС are located at the corners of a triangle as shown in the figure below. Assume d = 20 cm. (a) Find the resultant force vector acting on Q3. (b) Find the magnitude and direction of the force. d Q3 60° d Q1 60° 60° Q2 darrow_forwardThree point charges of magnitudes Q₁ = +6.0 μС, Q₂ = −7.0 μС, Qз = −13.0 μC are placed on the x-axis at x = 0 cm, x = 40 cm, and x = 120 cm, respectively. What is the force on the Q3 due to the other two charges?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY