bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 34, Problem 18P

(a)

To determine

To show: Light will pass symmetrically through the prism if the angle of incidence on the first surface θ1=48.6° .

(a)

Expert Solution
Check Mark

Answer to Problem 18P

The light will pass symmetrically through the prism, if the angle of incidence on the first surface θ1=48.6° .

Explanation of Solution

Given information: The apex angle is 60º , apex refraction is 1.50 and the angle of refraction at first interface is 48.6º .

The diagram for the given condition is shown below.

Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term, Chapter 34, Problem 18P

Figure (1)

Apply Snell’s law of refraction at the first interface.

The Snell’s law of refraction is,

n1sinθ1=n2sinθ2 (1)

Here,

n1 is the index of refraction of air.

n2 is the index of refraction of the medium.

θ1 is angle of refraction at the first interface.

θ2 is angle of refraction in medium.

Substitute 1 for n1 , 1.50 for n2 and 48.6º for θ1 in equation (1).

1×sin48.6º=1.50×sinθ2sinθ2=0.50θ2=30º

Apply Snell’s law of refraction at the second interface.

The Snell’s law of refraction is,

n2sinθ2=n1sinθ4 (2)

Here,

n1 is the index of refraction of air.

n2 is the index of refraction of the medium.

θ4 is angle of refraction at the second interface.

θ2 is angle of refraction in medium.

Substitute 1 for n1 , 1.50 for n2 and 30º for θ2 in equation (2).

1.50×sin30º=1×sinθ4θ448.6º

Since, θ1=θ4 , so light will pass symmetrically through the prism.

Conclusion:

Therefore, the light will pass symmetrically through the prism.

(b)

To determine

The angle of minimum deviation δmin for θ1=48.6º .

(b)

Expert Solution
Check Mark

Answer to Problem 18P

The angle of minimum deviation δmin for θ1=48.6º is 37.2º .

Explanation of Solution

Given information: The apex angle is 60º , apex refraction is 1.50 and the angle of refraction at first interface is 48.6º .

The angle of minimum deviation δmin is,

δmin=θ1+θ4Φ (3)

Here,

δmin is the angle of minimum deviation.

Φ is the apex angle.

θ1 is the orientation angle at first interface.

θ4 is the orientation angle at second interface

Substitute 60º for Φ 48.6º for θ4 and 48.6º for θ1 in equation (3).

δmin=48.6º+48.6º60º=37.2º

Conclusion:

Therefore, the orientation angle in the proper frame is 37.2º .

(c)

To determine

The angle of minimum deviation δmin for θ1=45.6º .

(c)

Expert Solution
Check Mark

Answer to Problem 18P

The angle of minimum deviation δmin for θ1=45.6º is 31.2º .

Explanation of Solution

Given information: The apex angle is 60º , apex refraction is 1.50 and the angle of refraction at first interface is 45.6º .

Apply Snell’s law of refraction at the first interface.

The Snell’s law of refraction is,

n1sinθ1=n2sinθ2

Here,

n1 is the index of refraction of air.

n2 is the index of refraction of the medium.

θ1 is angle of refraction at the first interface.

θ2 is angle of refraction in medium.

Substitute 1 for n1 , 1.50 for n2 and 45.6º for θ1 in above equation.

1×sin45.6º=1.50×sinθ2sinθ2=0.476θ2=28.44º

Apply Snell’s law of refraction at the second interface.

The Snell’s law of refraction is,

n2sinθ2=n1sinθ4

Here,

n1 is the index of refraction of air.

n2 is the index of refraction of the medium.

θ4 is angle of refraction at the second interface.

θ2 is angle of refraction in medium.

Substitute 1 for n1 , 1.50 for n2 and 28.44º for θ2 in above equation.

1.50×sin28.44º=1×sinθ4θ4=45.6º

The angle of minimum deviation δmin is,

δmin=θ1+θ4Φ (3)

Here,

δmin is the angle of minimum deviation.

Φ is the apex angle.

θ1 is the orientation angle at first interface.

θ4 is the orientation angle at second interface

Substitute 60º for Φ 45.6º for θ4 and 45.6º for θ1 in above equation.

δmin=45.6º+45.6º60º=31.2º

Conclusion:

Therefore, the orientation angle in the proper frame is 31.2º .

(d)

To determine

The angle of minimum deviation δmin for θ1=51.6º .

(d)

Expert Solution
Check Mark

Answer to Problem 18P

The angle of minimum deviation δmin for θ1=51.6º is 43.2º .

Explanation of Solution

Given information: The apex angle is 60º , apex refraction is 1.50 and the angle of refraction at first interface is 51.6º .

Apply Snell’s law of refraction at the first interface.

The Snell’s law of refraction is,

n1sinθ1=n2sinθ2

Here,

n1 is the index of refraction of air.

n2 is the index of refraction of the medium.

θ1 is angle of refraction at the first interface.

θ2 is angle of refraction in medium.

Substitute 1 for n1 , 1.50 for n2 and 51.6º for θ1 in above equation.

1×sin51.6º=1.50×sinθ2θ2=31.5º

Apply Snell’s law of refraction at the second interface.

The Snell’s law of refraction is,

n2sinθ2=n1sinθ4

Here,

n1 is the index of refraction of air.

n2 is the index of refraction of the medium.

θ4 is angle of refraction at the second interface.

θ2 is angle of refraction in medium.

Substitute 1 for n1 , 1.50 for n2 and 31.5º for θ2 in above equation.

1.50×sin31.5º=1×sinθ4θ4=51.6º

The angle of minimum deviation δmin is,

δmin=θ1+θ4Φ

Here,

δmin is the angle of minimum deviation.

Φ is the apex angle.

θ1 is the orientation angle at first interface.

θ4 is the orientation angle at second interface

Substitute 60º for Φ 51.6º for θ4 and 51.6º for θ1 in above equation.

δmin=51.6º+51.6º60º=43.2º

Conclusion:

Therefore, the orientation angle in the proper frame is 43.2º .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. An arrangement of three charges is shown below where q₁ = 1.6 × 10-19 C, q2 = -1.6×10-19 C, and q3 3.2 x 10-19 C. 2 cm Y 93 92 91 X 3 cm (a) Calculate the magnitude and direction of the net force on q₁. (b) Sketch the direction of the forces on qi
(Figure 1)In each case let w be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w  Find the direction of the force exerted on the strut by the pivot in the arrangement (a). Express your answer in degrees. Find the tension Tb in the cable in the arrangement (b). Express your answer in terms of w. Find the magnitude of the force exerted on the strut by the pivot in the arrangement (b). Express your answer in terms of w.
(Figure 1)In each case let ww be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w.  Find the direction of the force exerted on the strut by the pivot in the arrangement (b). Express your answer in degrees.

Chapter 34 Solutions

Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY