Fundamentals of Physics Extended
Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 34, Problem 134P

Isaac Newton, having convinced himself (erroneously as it turned out) that chromatic aberration is an inherent property of refracting telescopes, invented the reflecting telescope, shown schematically in Fig. 34-59. He presented his second model of this telescope, with a magnifying power of 38, to the Royal Society (of London), which still has it. In Fig. 34-59 incident light falls, closely parallel to the telescope axis, on the objective mirror M. After reflection from small mirror M′ (the figure is not to scale), the rays form a real, inverted image in the focal plane (the plane perpendicular to the line of sight, at focal point F). This image is then viewed through an eyepiece. (a) Show that the angular magnification mθ for the device is given by Eq. 34-15:

m θ = f ob / f ey ,

where fob is the focal length of the objective mirror and fey is that of the eyepiece. (b) The 200 in. mirror in the reflecting telescope at Mt. Palomar in California has a focal length of 16.8 m. Estimate the size of the image formed by this mirror when the object is a meter stick 2.0 km away. Assume parallel incident rays. (c) The mirror of a different reflecting astronomical telescope has an effective radius of curvature of 10 m (“effective” because such mirrors are ground to a parabolic rather than a spherical shape, to eliminate spherical aberration defects). To give an angular magnification of 200, what must be the focal length of the eyepiece?

Chapter 34, Problem 134P, Isaac Newton, having convinced himself erroneously as it turned out that chromatic aberration is an

Figure 34-59 Problem 134.

Blurred answer
Students have asked these similar questions
Estimate the linear separation (in kilometers) of two objects at a distance of 1.4 x 106 km that can just be resolved by an observer on Earth (a) using the naked eye and (b) using a telescope with a 5.4-m diameter mirror. Use the following data: diameter of pupil = 5.0 mm; wavelength of light = 550 nm. (a) Number i Units (b) Number i Units
Estimate the linear separation (in kilometers) of two objects at a distance of 1.9 × 10° km that can just be resolved by an observer on Earth (a) using the naked eye and (b) using a telescope with a 7.4-m diameter mirror. Use the following data: diameter of pupil = 5.0 mm; wavelength of light = 550 nm. %3D (a) Number i 2.5E8 Units km (b) Number i 1.7E5 Units km
A ray of light is incident on a glass prism (n = 1.6) with an angle of incidence 0, emerges from the opposite side of the prism with an angle 0,. The apex angle of the prism is 60° The deviation angle, 8, between the incident ray and the emerging ray is then: = 40°. The ray 60° 0, = 40° Nair =1 O 21.7° O 51.3 O 44.5° 38.4 13.8

Chapter 34 Solutions

Fundamentals of Physics Extended

Ch. 34 - Figure 34-31 shows a coordinate system in front of...Ch. 34 - You look through a camera towards an image of a...Ch. 34 - ILW A moth at about eye level is 10 cm in front of...Ch. 34 - In Fig. 34-32, an isotropic point source of light...Ch. 34 - Figure 34-33 shows an overhead view of a corridor...Ch. 34 - SSM WWW Figure 34-34 shows a small lightbulb...Ch. 34 - An object is moved along the central axis of a...Ch. 34 - A concave shaving mirror has a radius of curvature...Ch. 34 - An object is placed against the center of a...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22SSM 23, 29 More mirrors. Object...Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - GO Figure 34-37 gives the lateral magnification m...Ch. 34 - a A luminous point is moving at speed vo towards a...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - In Fig. 34-38, a beam of parallel light rays from...Ch. 34 - A glass sphere has radius R = 5.0 cm and index of...Ch. 34 - A lens is made of glass having an index of...Ch. 34 - Figure 34-40 gives the lateral magnification m of...Ch. 34 - A movie camera with a single lens of focal length...Ch. 34 - An object is placed against the center of a thin...Ch. 34 - You produce an image of the Sun on a screen, using...Ch. 34 - An object is placed against the center of a thin...Ch. 34 - SSM WWW A double-convex lens is to be made of...Ch. 34 - An object is moved along the central axis of a...Ch. 34 - SSM An illuminated slide is held 44 cm from a...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - In Fig. 34-44, a real inverted image I of an...Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - If the angular magnification of an astronomical...Ch. 34 - SSM In a microscope of the type shown in the Fig....Ch. 34 - Figure 34-46a shows the basic structure of an old...Ch. 34 - SSM Figure 34-47a shows the basic structure of a...Ch. 34 - An object is 10.0 mm from the objective of a...Ch. 34 - Someone with a near point Pn of 25 cm views a...Ch. 34 - An object is placed against the center of a...Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - SSM The formula 1/p 1/i = 1/f is called the...Ch. 34 - Figure 34-50a is an overhead view of two vertical...Ch. 34 - SSM Two thin lenses of focal lengths f1 and f2 are...Ch. 34 - Two plane mirrors are placed parallel to each...Ch. 34 - In Fig. 34-51, a box is somewhere at the left, on...Ch. 34 - In Fig. 34-52, an object is placed in front of a...Ch. 34 - SSM A fruit fly of height H sits in front of lens...Ch. 34 - You grind the lenses shown in Fig. 34-53 from flat...Ch. 34 - In Fig. 34-54, a fish watcher at point P watches a...Ch. 34 - A goldfish in a spherical fish bowl of radius R is...Ch. 34 - Figure 34-56 shows a beam expander made with two...Ch. 34 - You look down at a coin that lies at the bottom of...Ch. 34 - A pinhole camera has the hole a distance 12 cm...Ch. 34 - Light travels from point A to point B via...Ch. 34 - A point object is 10 cm away from a plane mirror,...Ch. 34 - Show that the distance between an object and its...Ch. 34 - A luminous object and a screen are a fixed...Ch. 34 - An eraser of height 1.0 cm is placed 10.0 cm in...Ch. 34 - A peanut is placed 40 cm in front of a two-lens...Ch. 34 - A coin is placed 20 cm in front of a two-lens...Ch. 34 - An object is 20 cm to the left of a thin diverging...Ch. 34 - In Fig 34-58 a pinecone is at distance p1 = 1.0 m...Ch. 34 - One end of a long glass rod n = 1.5 is a convex...Ch. 34 - A short straight object of length L lies along the...Ch. 34 - Prove that if a plane mirror is rotated through an...Ch. 34 - An object is 30.0 cm from a spherical mirror,...Ch. 34 - A concave mirror has a radius of curvature of 24...Ch. 34 - A pepper seed is placed in front of a lens. The...Ch. 34 - The equation 1/p 1/i = 2/r for spherical mirrors...Ch. 34 - A small cup of green tea is positioned on the...Ch. 34 - A 20-mm-thick layer of water n = 1.33 floats on a...Ch. 34 - A millipede sits 1.0 m in front of the nearest...Ch. 34 - a Show that if the object O in Fig. 34-19c is...Ch. 34 - Isaac Newton, having convinced himself erroneously...Ch. 34 - A narrow beam of parallel light rays is incident...Ch. 34 - A corner reflector, much used in optical,...Ch. 34 - A cheese enchilada is 4.00 cm in front of a...Ch. 34 - A grasshopper hops to a point on the central axis...Ch. 34 - In Fig. 34-60, a sand grain is 3.00 cm from thin...Ch. 34 - Suppose the farthest distance a person can see...Ch. 34 - A simple magnifier of focal length f is placed...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY