College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 10CQ
Distances to very remote galaxies are estimated based on their apparent type, which indicate the number of stars in the galaxy, and their measured brightness. Explain how the measured brightness would vary with distance. Would there be any correction necessary to compensate for the red shift of the galaxy (all distant galaxies have signi?cant ted shifts)? Discuss possible causes of uncertainties in these measurements.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Approximate values of length (in meters)
107
Diameter of Earth
1011
Distance from Earth to Sun
1016
Distance traveled by light in one year
1021
Diameter of the Milky Way Galaxy
1022
Distance from Earth to the nearest galaxy
1025 Distance from Earth to the edge of the known universe
Please don't provide handwritten solution ...
What are the angular diameters of the following, as seen from Earth?
a. The Sun, with radius R = Rsun = 7x10^5 km.
b. Betelgeuse, with MV = -5.5 mag, mv = 0.8 mag, and R = 650Rsun.
c. The galaxy M31, with R = 30 kpc at a distance D = 0.7Mpc.
d. The Coma cluster of galaxies, with R = 3 Mpc at a distance D = 100 Mpc.
Chapter 34 Solutions
College Physics
Ch. 34 - Explain why it only appears that we are at the...Ch. 34 - If there is no observable edge to the universe,...Ch. 34 - If the universe is infinite, does it have a...Ch. 34 - Another known cause of red shift in light is the...Ch. 34 - If some unknown cause of red shiftsuch as light...Ch. 34 - Olbers’s paradox poses an interesting question: If...Ch. 34 - If the cosmic microwave background radiation...Ch. 34 - The decay of one type of Kmeson is cited as...Ch. 34 - Distances to local galaxies are determined by...Ch. 34 - Distances to very remote galaxies are estimated...
Ch. 34 - If the smallest meaningful time interval is...Ch. 34 - Quantum gravity, if developed, would be an...Ch. 34 - Does observed gravitational lensing correspond to...Ch. 34 - Suppose you measure the red shifts of all the...Ch. 34 - What are gravitational waves, and have they yet...Ch. 34 - Is the event horizon of a black hole the actual...Ch. 34 - Suppose black holes radiate their mass away and...Ch. 34 - Discuss the possibility that star velocities at...Ch. 34 - How does relativistic time dilation prohibit...Ch. 34 - If neutrino oscillations do occur, will they...Ch. 34 - Lacking direct evidence of WIMPs as dark matter,...Ch. 34 - Must a complex system be adaptive to be of...Ch. 34 - State a necessary condition for a System to be...Ch. 34 - What is critical temperature Tc? Do all materials...Ch. 34 - Explain how good thermal contact with liquid...Ch. 34 - Not only is liquid nitrogen a cheaper coolant than...Ch. 34 - For experimental evidence particularly of...Ch. 34 - Discuss whether you think there are limits to what...Ch. 34 - Find the approximate mass of the luminous matter...Ch. 34 - Find the approximate mass of the dark and luminous...Ch. 34 - (a) Estimate the mass of the luminous matter in...Ch. 34 - If a galaxy is 500 Mly away from us, how fast do...Ch. 34 - On average, how far away are galaxies mat are...Ch. 34 - Our solar system orbits the center of the Milky...Ch. 34 - (a) What is the approximate speed relative to us...Ch. 34 - (a) Calculate The approximate age of the universe...Ch. 34 - Assuming a circular orbit for the Sun about the...Ch. 34 - (a) What is the approximate force of gravity on a...Ch. 34 - Andromeda galaxy is the closest large galaxy and...Ch. 34 - (a) A particle and its antiparticle are at rest...Ch. 34 - The average particle energy needed to observe...Ch. 34 - The peak intensity of the CMBR occurs at a...Ch. 34 - (a) What Hubble constant corresponds to an...Ch. 34 - Show that the velocity of a star orbiting its...Ch. 34 - The core of a star collapses during a supernova,...Ch. 34 - Using data from the previous problem, find the...Ch. 34 - Distances to the nearest stars (up to 500 by away)...Ch. 34 - (a) Use the Heisenberg uncertainty principle to...Ch. 34 - Construct Your Own Problem Consider a star moving...Ch. 34 - What is the Schwarzschild radius of a blank hole...Ch. 34 - Black holes with masses smaller than muse formed...Ch. 34 - Supermassive black holes are thought to exist at...Ch. 34 - Construct Your Own Problem Consider a supermassive...Ch. 34 - The characteristic length of entities in...Ch. 34 - If the dark matter in the Milky Way were composed...Ch. 34 - The critical mass density needed to just halt the...Ch. 34 - Assume the average density of the universe is 0.1...Ch. 34 - To get an idea of how empty deep spam is on the...Ch. 34 - A section of superconducting wire carries a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A womans father has ornithine transcarbamylase deficiency (OTD), an X-linked recessive disorder producing menta...
Genetic Analysis: An Integrated Approach (3rd Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
Microphylls are found in which plant group? (A) lycophytes (B) liverworts (C) ferns (D) hornworts
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- helparrow_forwardAn observational survey of distant galaxies is undertaken that involves measuring their distances using cepheid variables and red-shifts using spectroscopy. Explain how cepheid variables can be used to measure the distances to galaxies. A spectral line is observed whose wavelength in the laboratory is de length of this spectral line observed in each galaxy, Xo, is listed in the table, along with the distance, d, to the galaxy. Determine the red-shift and the recession velocity of each galaxy and tabulate your results by making a copy of the table and filling in the blank spaces. Sketch a Hubble diagram using your results and determine the value of the Hubble constant Ho in units of km s-1 Mpc. 650 nm. The wave- Galaxy 1 652.69 Galaxy 2 Galaxy 3 Galaxy 4 Galaxy 5 653.01 do (nm) d (Mpc) 658.54 662.18 681.63 17 19 54 77 200 v (km s-1)arrow_forwardhding Light Years 26.1 How far is it from Los Angeles to New York? Pretty far, but it can still be measured in miles or kilometers. How far is it from Earth to the Sun? It's about one hundred forty-nine million, six hundred thousand kilometers (149,600,000, or 1.496 x 10 km). Because this number is so large, and many other distances in space are even larger, scientists developed bigger units in order to measure them. An Astronomical Unit (AU) is 4:496x 108 km (the distance from Earth to the sun). This unit is usually used to measure distances within our solar system. To measure longer distances (like the distance between Earth and stars and other galaxies), the light year (ly) is used. A light year is the distance that light travels through space in one year, or 9.468 x 1012 km. 28.1 n the in tem. EXAMPLES 1. Converting light years (ly) to kilometers (km) Earth's closest star (Proxima Centauri) is about 4.22 light years away. How far is this in kilometers? Explanation/Answer: Multiply…arrow_forward
- The Kormendy relation for ellipticals can be written as He = 20.2+ 3.0 log R. where R. is the half-light radius (in kpc) and 4e is the surface brightness (in magnitudes per square arc second) at R.. An elliptical galaxy obeying this relation will have a total luminosity Lo R for some index 7. What is the correct value of n? O a. n=-6/5 O b. n= 4/5 T23D Oc n= 16/5 O d. n cannot be determined with the information we have.arrow_forwardhelp asaparrow_forwardJ6arrow_forward
- Problem 2. The redshift is defined to be the quantity Job – Xem Xem where Aob and Aem are respectively the wavelengths at which radiation is observed and emitted. 1. Find the corresponding definition in terms of observed and emitted frequencies fob and fem. 2. The observed frequency of radio waves from a distant galaxy is 5 GHz. At the location of galaxy, the frequency is 6 GHz. Calculate the redshift of the galaxy. 3. If the galaxy was 500 Mpc away from the Milky way when the radio waves were emitted. How far away is this galaxy today?arrow_forwardPlease answer in Bold.arrow_forwardA student in PHYS 115 at NYIT wants to estimate the age of the galaxy. She knows that the most distant star in the galaxy is 1.5 million light years away from earth. She uses data from NASA to determine that the galaxy is receding at approximately v = 31.5 km/s. Based on her measurements, how many years old is the galaxy?arrow_forward
- The figure above shows the light-curve obtained from continuous monitoring of the flux received from a star. Assuming that the dips arise because a planet orbiting the star passes between it and the observer once per orbit, estimate the orbital period (in days), the orbital semi-major axis (in Astronomical Units), and the physical radius of the planet (in units of the Earth’s radius). The star has a mass of 1.47 M⊙ and a radius of 1.84 R⊙.arrow_forwardProblem 1. The Sun as seen from Earth has an apparent magnitude of -26 in the B-band. 1. What is the Sun's absolute magnitude (in the B-band)? 2. What would its apparent magnitude be as seen from Jupiter? (Jupiter is approximately 5.2 AU from the Sun.) 3. At a certain distance d from a Star A, its apparent brightness is f. If we were to travel at a relativistic velocity to a point in space which is 5 times further away, how much fainter would the star appear to us? (i.e. what fraction of its original apparent brightness would it now appear to us?)arrow_forwardQuasars, an abbreviation for quasi-stellar radio sources, are distant objects that look like stars through a telescope but that emit far more electromagnetic radiation than an entire normal galaxy of stars. An example is the bright object below and to the left of center in Fig; the other elongated objects in this image are normal galaxies. The leading model for the structure of a quasar is a galaxy with a supermassive black hole at its center. In this model, the radiation is emitted by interstellar gas and dust within the galaxy as this material falls toward the black hole. The radiation is thought to emanate from a region just a few light-years in diameter. (The diffuse glow surrounding the bright quasar shown in Fig. is thought to be this quasar’s host galaxy.) To investigate this model of quasars and to study other exotic astronomical objects, the Russian Space Agency has placed a radio telescope in a large orbit around the earth. When this telescope is 77,000 km from earth and the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax