
Organic Chemistry (9th Edition)
9th Edition
ISBN: 9780321971371
Author: Leroy G. Wade, Jan W. Simek
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 3.3B, Problem 3.6P
(a)
Interpretation Introduction
To determine: The structures and names corresponding to the five isomers of
Interpretation: The structures and names corresponding to the five isomers of
Concept introduction: The rules for the naming of
- Firstly the longest carbon chain is chosen and the naming of chain is done according to the number of carbon atoms that are present in the chain.
- Numbering of the chain is done in such a way that the substituent groups are placed at the lowest position.
- Naming of substituent groups is done by the replacing of –ane with –yl.
- If different types of substituent groups are present then they are written in an alphabetical order.
- If a substituent is present more than one time then prefixes like di, tri, tetra are used depending on the number of times that particular substituent group appears in the chain.
(b)
Interpretation Introduction
To determine: The structures and names corresponding to the nine isomers of
Interpretation: The structures and names corresponding to the nine isomers of
Concept introduction: The rules for the naming of alkanes are stated below.
- Firstly the longest carbon chain is chosen and the naming of chain is done according to the number of carbon atoms that are present in the chain.
- Numbering of the chain is done in such a way that the substituent groups are placed at the lowest position.
- Naming of substituent groups is done by the replacing of –ane with –yl.
- If different types of substituent groups are present then they are written in an alphabetical order.
- If a substituent is present more than one time then prefixes like di, tri, tetra are used depending on the number of times that particular substituent group appears in the chain.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Using reaction free energy to predict equilibrium composition
Consider the following equilibrium:
2NO2 (g) = N2O4(g)
AGº = -5.4 kJ
Now suppose a reaction vessel is filled with 4.53 atm of dinitrogen tetroxide (N2O4) at 279. °C. Answer the following questions about this system:
Under these conditions, will the pressure of N2O4 tend to rise or fall?
Is it possible to reverse this tendency by adding NO2?
In other words, if you said the pressure of N2O4 will tend to rise, can that
be changed to a tendency to fall by adding NO2? Similarly, if you said the
pressure of N2O4 will tend to fall, can that be changed to a tendency to
'2'
rise by adding NO2?
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of NO 2 needed to reverse it.
Round your answer to 2 significant digits.
00
rise
☐ x10
fall
yes
no
☐ atm
G
Ar
1
Why do we analyse salt?
Curved arrows are used to illustrate the flow of electrons. Using
the provided starting and product structures, draw the curved
electron-pushing arrows for the following reaction or
mechanistic step(s).
Be sure to account for all bond-breaking and bond-making
steps.
H
H
CH3OH, H+
H
Select to Add Arrows
H°
0:0
'H
+
Q
HH
■ Select to Add Arrows
CH3OH,
H*
H.
H
CH3OH, H+
HH
■ Select to Add Arrows i
Please select a drawing or reagent from the question area
Chapter 3 Solutions
Organic Chemistry (9th Edition)
Ch. 3.2 - Using the general molecular formula for alkanes:...Ch. 3.3B - Name the following alkanes and haloalkanes. When...Ch. 3.3B - Write structures for the following compounds. a....Ch. 3.3B - Provide IUPAC names for the following compounds....Ch. 3.3B - Prob. 3.5PCh. 3.3B - Prob. 3.6PCh. 3.3B - Prob. 3.7PCh. 3.3B - Draw the structures of the following compounds. a....Ch. 3.3B - Without looking at the structures, give molecular...Ch. 3.4C - Prob. 3.10P
Ch. 3.7B - Prob. 3.11PCh. 3.7C - Draw a graph similar to Figure 3-9, of the...Ch. 3.8B - Draw a graph similar to Figure 3-11, of the...Ch. 3.9 - Draw a perspective representation of the most...Ch. 3.10C - Give IUPAC names for the following compounds.Ch. 3.10C - Draw the structure and give the molecular formula...Ch. 3.11 - Which of the following cycloalkanes are capable of...Ch. 3.11 - Give IUPAC names for the following cycloalkanes.Ch. 3.12B - The heat of combustion of...Ch. 3.12C - Prob. 3.20PCh. 3.13B - The cyclohexane chair shown in Figure 3-22 has the...Ch. 3.13B - Draw 1,2,3,4,5,6-hexamethylcyclohexane with all...Ch. 3.14 - Prob. 3.23PCh. 3.14 - Prob. 3.24PCh. 3.14 - Draw the most stable conformation of a....Ch. 3.15 - Prob. 3.26PCh. 3.15 - a. Draw both chair conformations of cis-1...Ch. 3.15 - Prob. 3.28PCh. 3.15A - Draw the two chair conformations of each of the...Ch. 3.15B - Draw the most stable conformation of a....Ch. 3.16A - Name the following compounds.Ch. 3.16B - Prob. 3.32PCh. 3 - Prob. 3.33SPCh. 3 - Prob. 3.34SPCh. 3 - 3-35 a. Draw and name the five cycloalkane...Ch. 3 - Draw the structure that corresponds with each...Ch. 3 - Each of the following descriptions applies to more...Ch. 3 - Write structures for a homologous series of...Ch. 3 - Prob. 3.39SPCh. 3 - Construct a graph, similar to Figure 3-11, of the...Ch. 3 - The following names are all incorrect or...Ch. 3 - In each pair of compounds, which compound has the...Ch. 3 - There are eight different five-carbon alkyl...Ch. 3 - Use a Newman projection about the indicated bond...Ch. 3 - a. Draw the two chair conformations of...Ch. 3 - Draw the two chair conformations of each compound,...Ch. 3 - Using what you know about the conformational...Ch. 3 - Prob. 3.48SPCh. 3 - Draw Newman projections along the C3C4 bond to...Ch. 3 - Prob. 3.50SPCh. 3 - The most stable form of the common sugar glucose...Ch. 3 - This is a Newman projection of a substituted...
Knowledge Booster
Similar questions
- What are examples of analytical methods that can be used to analyse salt in tomato sauce?arrow_forwardA common alkene starting material is shown below. Predict the major product for each reaction. Use a dash or wedge bond to indicate the relative stereochemistry of substituents on asymmetric centers, where applicable. Ignore any inorganic byproducts H Šali OH H OH Select to Edit Select to Draw 1. BH3-THF 1. Hg(OAc)2, H2O =U= 2. H2O2, NaOH 2. NaBH4, NaOH + Please select a drawing or reagent from the question areaarrow_forwardWhat is the MOHR titration & AOAC method? What is it and how does it work? How can it be used to quantify salt in a sample?arrow_forward
- Predict the major products of this reaction. Cl₂ hv ? Draw only the major product or products in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If there will be no products because there will be no significant reaction, just check the box under the drawing area and leave it blank. Note for advanced students: you can ignore any products of repeated addition. Explanation Check Click and drag to start drawing a structure. 80 10 m 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility DII A F1 F2 F3 F4 F5 F6 F7 F8 EO F11arrow_forwardGiven a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H2? Similarly, if you said the pressure of N will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm Х ด ? olo 18 Ararrow_forward
- Four liters of an aqueous solution containing 6.98 mg of acetic acid were prepared. At 25°C, the measured conductivity was 5.89x10-3 mS cm-1. Calculate the degree of dissociation of the acid and its ionization constant.Molecular weights: O (15.999), C (12.011), H (1.008).Limiting molar ionic conductivities (λ+0 and λ-0) of Ac-(aq) and H+(aq): 40.9 and 349.8 S cm-2 mol-1.arrow_forwardDetermine the change in Gibbs energy, entropy, and enthalpy at 25°C for the battery from which the data in the table were obtained.T (°C) 15 20 25 30 35Eo (mV) 227.13 224.38 221.87 219.37 216.59Data: n = 1, F = 96485 C mol–1arrow_forwardIndicate the correct options.1. The units of the transport number are Siemens per mole.2. The Siemens and the ohm are not equivalent.3. The Van't Hoff factor is dimensionless.4. Molar conductivity does not depend on the electrolyte concentration.arrow_forward
- Ideally nonpolarizable electrodes can1. participate as reducers in reactions.2. be formed only with hydrogen.3. participate as oxidizers in reactions.4. form open and closed electrochemical systems.arrow_forwardIndicate the options for an electrified interface:1. Temperature has no influence on it.2. Not all theories that describe it include a well-defined electrical double layer.3. Under favorable conditions, its differential capacitance can be determined with the help of experimental measurements.4. A component with high electronic conductivity is involved in its formation.arrow_forwardTo describe the structure of the interface, there are theories or models that can be distinguished by:1. calculation of the charge density.2. distribution of ions in the solution.3. experimentally measured potential difference.4. external Helmoltz plane.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning