
Concept explainers
The time when the star dies.

Answer to Problem 8TE
When the stars are no longer capable of utilizing the thermonuclear fuels, then the star dies.
Explanation of Solution
The life of the star depends upon its mass. When the star is born, the hydrogen nuclei fuse to begin the thermonuclear reaction with sufficient pressure. A higher-mass star might have more material, but it also uses up the material more quickly due to its higher temperature. When the hydrogen in the center of the star is depleted, the star's core shrinks and heats up. This causes the outer part of the star, the star's atmosphere, which is still mostly hydrogen, to start to expand. The star becomes larger and brighter and its surface temperature cools, so it glows red. The star is now called a red giant star. Eventually, the core of the star becomes hot enough for the next nuclear reaction to start: atoms of helium collide and fuse into heavier elements such as carbon and oxygen. Following the red giant phase, the star becomes unstable and will eventually die.
If the stars no longer able to consume the thermonuclear fuel, the star collapse and it dies, outer & layers explode as a 'supernova.'
Conclusion:
Therefore, when the stars are no longer capable of utilizing the thermonuclear fuels, then the star dies.
Chapter 33 Solutions
Conceptual Physical Science Explorations
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Microbiology: An Introduction
Chemistry: Structure and Properties (2nd Edition)
Chemistry (7th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Campbell Biology (11th Edition)
- A piece of metal is placed on top of a 2.0 - kg wooden block (mass density = 562 kg/m³) piece. UseArchimedes' principle to calculate the mass (in kg) of copper if the top of the wood surface is exactly at thewater's surface?arrow_forwardA filmmaker wants to achieve an interesting visual effect by filming a scene through a converging lens with a focal length of 50.0 m. The lens is placed betwen the camera and a horse, which canters toward the camera at a constant speed of 7.9 m/s. The camera starts rolling when the horse is 36.0 m from the lens. Find the average speed of the image of the horse (a) during the first 2.0 s after the camera starts rolling and (b) during the following 2.0 s.arrow_forwardAnswer the question (Physics)arrow_forward
- Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forward
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





