Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 8Q
Compare the mirror equation with the thin lens equation. Discuss similarities and differences, especially the sign conventions for the quantities involved.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not
exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN.
P
125 kN
B
125 kN
C
0.9 m
1.2 m
The smallest allowable value of the diameter d₁ is
The smallest allowable value of the diameter d₂ is
mm.
mm.
Westros, from Game of Thrones, has an area of approximately 6.73⋅106 miles26.73⋅106miles2. Convert the area of Westros to km2 where 1.00 mile = 1.609 km.
a) What is the lenght of x? b) Findθ c) Find ϕ
Chapter 33 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 33.2 - If the leaf (object) of Example 332 is moved...Ch. 33.2 - Figure 3313 shows a converging lens held above...Ch. 33.4 - A Lucite planoconcave lens (sec Fig. 332b) has one...Ch. 33.6 - What power contact lens is needed for an eye to...Ch. 33.8 - A 40 telescope has a 1.2-cm focal length eyepiece....Ch. 33 - Where must the film be placed if a camera lens is...Ch. 33 - A photographer moves closer to his subject and...Ch. 33 - Can a diverging lens form a real image under any...Ch. 33 - Use ray diagrams to show that a real image formed...Ch. 33 - Light rays are said to be reversible. Is this...
Ch. 33 - Can real images be projected on a screen? Can...Ch. 33 - A thin converging lens is moved closer to a nearby...Ch. 33 - Compare the mirror equation with the thin lens...Ch. 33 - A lens is made of a material with an index of...Ch. 33 - Explain how you could have a virtual object.Ch. 33 - A dog with its tail in the air stands facing a...Ch. 33 - A cat with its tail in the air stands facing a...Ch. 33 - The thicker a double convex lens is in the center...Ch. 33 - Does the focal length of a lens depend on the...Ch. 33 - An underwater lens consists of a carefully shaped...Ch. 33 - Consider two converging lenses separated by some...Ch. 33 - Will a nearsighted person who wears corrective...Ch. 33 - You can tell whether people are nearsighted or...Ch. 33 - The human eye is much like a camerayet, when a...Ch. 33 - In attempting to discern distant details, people...Ch. 33 - Is the image formed on the retina of the human eye...Ch. 33 - Reading glasses use converging lenses. A simple...Ch. 33 - Why must a camera lens be moved farther from the...Ch. 33 - Spherical aberration in a thin lens is minimized...Ch. 33 - Prob. 26QCh. 33 - (I) A sharp image is located 373 mm behind a...Ch. 33 - (I) Sunlight is observed to focus at a point 18.5...Ch. 33 - (a) What is the power of a 23.5-cin-focal-length...Ch. 33 - (II) A certain lens focuses an object 1.85m away...Ch. 33 - (II) A 105-mm-focal-length lens is used to focus...Ch. 33 - (II) A stamp collector uses a converging lens with...Ch. 33 - (II) It is desired to magnify reading material by...Ch. 33 - (II) A 8.00-D lens is held 12.5 cm from an ant...Ch. 33 - (II) An object is located 1.50 m from an 8.0-D...Ch. 33 - (II) (a) How far from a 50.0-mm-focal-length lens...Ch. 33 - (II) How far from a converging lens with a focal...Ch. 33 - (II) (a) A 2.80-cm-high insect is 1.30 m from a...Ch. 33 - (II) A bright object and a viewing screen are...Ch. 33 - (II) How far apart are an object and an image...Ch. 33 - (II) Show analytically that the image formed by a...Ch. 33 - (II) In a slide or movie projector, the film acts...Ch. 33 - (III) A bright object is placed on one side of a...Ch. 33 - (III) (a) Show that the lens equation can be...Ch. 33 - (II) A diverging lens with f = 33.5cm is placed...Ch. 33 - (II) Two 25.0-cm-focal-length converging lenses...Ch. 33 - (II) A 34.0-cm-focal-lenglh converging lens is...Ch. 33 - (II) The two converging lenses of Example 335 are...Ch. 33 - (II) A diverging lens with a focal length of 14 cm...Ch. 33 - (II) Two lenses, one converging with focal length...Ch. 33 - (II) A diverging lens is placed next to a...Ch. 33 - (II) A lighted candle is placed 36 cm in from of a...Ch. 33 - (I) A double concave lens has surface radii of...Ch. 33 - (I) Both surfaces of a double convex lens have...Ch. 33 - (I) Show that if the lens of Example 33-7 is...Ch. 33 - (I) A planoconvex lens (Fig. 33-2a) is to have a...Ch. 33 - (II) An object is placed 90.0cm from a glass lens...Ch. 33 - (II) A prescription for a corrective lens calls...Ch. 33 - (I) A properly exposed photograph is taken at f...Ch. 33 - (I) A television camera lens has a 17-cm focal...Ch. 33 - (II) Suppose that a correct exposure is 1250S at f...Ch. 33 - (II) A nature photographer wishes to photograph a...Ch. 33 - (I) A human eyeball is about 2.0 cm long and the...Ch. 33 - (II) A person struggles to read by holding a book...Ch. 33 - (II) Reading glasses of what power are needed for...Ch. 33 - (II) If the nearsighted person in Example 33-13...Ch. 33 - (II) An eye is corrected by a 4.50-D lens, 2.0cm...Ch. 33 - (II) A persons right eye can see objects clearly...Ch. 33 - (II) A person has a far point of 14 cm. What power...Ch. 33 - (II) One lens of a nearsighted persons eyeglasses...Ch. 33 - (II) What is the focal length of the eye lens...Ch. 33 - (II) A nearsighted person has near and far points...Ch. 33 - (II) The closely packed cones in the fovea of the...Ch. 33 - (II) What is the focal length of a magnifying...Ch. 33 - (II) What is the magnification of a lens used with...Ch. 33 - (II) A magnifier is rated at 3.0 for a normal eye...Ch. 33 - (II) Sherlock Holmes is using an...Ch. 33 - (II) A small insect is placed 5.85 cm from a...Ch. 33 - (II) A 3.40-mm-wide holt is viewed with a...Ch. 33 - (II) A magnifying glass with a focal length of...Ch. 33 - (II) A magnifying glass is rated at 3.0 for a...Ch. 33 - (II) A converging lens of focal length = 12 cm is...Ch. 33 - (I) What is the magnification of an astronomical...Ch. 33 - (I) The overall magnification of an astronomical...Ch. 33 - (II) A 7.0 binocular has 3.0-cm-focal-length...Ch. 33 - (II) An astronomical telescope has an objective...Ch. 33 - (II) An astronomical telescope has its two lenses...Ch. 33 - (II) A Galilean telescope adjusted for a relaxed...Ch. 33 - (II) What is the magnifying power of an...Ch. 33 - (II) The Moons image appears to be magnified 120...Ch. 33 - (II) A 120 astronomical telescope is adjusted for...Ch. 33 - (II) An astronomical telescope longer than about...Ch. 33 - (III)A reflecting telescope (Fig. 3338b) has a...Ch. 33 - (III) A 7.5 pair of binoculars has an objective...Ch. 33 - (I) A microscope uses an eyepiece with a focal...Ch. 33 - (I) A 680 microscope uses a 0.40-cm-focal-length...Ch. 33 - (I) A 17-cm-long microscope has an eyepiece with a...Ch. 33 - (II) A microscope has a 13.0 eyepiece and a 58.0...Ch. 33 - (II) Repeat Problem 75 assuming that the final...Ch. 33 - (II) A microscope has a 1.8-cm-focal-length...Ch. 33 - (II) The eyepiece or a compound microscope has a...Ch. 33 - (II) An inexpensive instructional lab microscope...Ch. 33 - (III) Given two 12-cm-focal-length lenses, you...Ch. 33 - (II) A planoconvex lens (Fig. 332a) has one nut...Ch. 33 - (II) An achromatic lens is made of two very thin...Ch. 33 - A 200-mm-focal-lcngth lens can be adjusted so that...Ch. 33 - If a 135-mm telephoto lens is designed to cover...Ch. 33 - For a camera equipped with a 58-mm-focal-length...Ch. 33 - Show that for objects very far away (assume...Ch. 33 - A small object is 25.0 cm from a diverging lens as...Ch. 33 - A converging lens with focal length of 13.0cm is...Ch. 33 - An astronomical telescope has a magnification of...Ch. 33 - (a) Show that if two thin lenses of focal lengths...Ch. 33 - How large is the image of the Sun on film used in...Ch. 33 - Two converging lenses are placed 30.0 cm apart....Ch. 33 - When an object is placed 60.0 cm from a certain...Ch. 33 - Figure 33-49 was taken from the NIST Laboratory...Ch. 33 - A movie star catches a reporter shooting pictures...Ch. 33 - As curly morning passed toward midday, and the...Ch. 33 - A child has a near point of 15 cm. What is the...Ch. 33 - A woman can see clearly with her right eye only...Ch. 33 - What is the magnifying power of a +4.0-D lens used...Ch. 33 - A physicist lost in the mountains tries to make a...Ch. 33 - A 50-year-old man uses +2.5-D lenses to read a...Ch. 33 - An object is moving toward a converging lens of...Ch. 33 - The objective lens and the eyepiece of a telescope...Ch. 33 - Two converging lenses, one with f = 4.0 cm and the...Ch. 33 - Sam purchases +3.50-D eyeglasses which correct his...Ch. 33 - The proper functioning of certain optical devices...Ch. 33 - In a science-fiction novel, an intelligent...Ch. 33 - A telephoto lens system obtains a large...
Additional Science Textbook Solutions
Find more solutions based on key concepts
True or false? Some trails are considered vestigial because they existed long ago.
Biological Science (6th Edition)
WHAT IF What would the discovery of a bacterial species that is a methanogen imply about the evolution of the ...
Campbell Biology (11th Edition)
The following data were obtained from a disk-diffusion test. Antibiotic Zone of Inhibition A 15 mm B 0 mm c 7 m...
Microbiology: An Introduction
What is the reducing agent in the following reaction?
2 Br –– (aq) + H2 O2 (aq) + 2 H+ (aq) → Br2 (aq) + 2 H2 ...
Chemistry: The Central Science (14th Edition)
Which coastal area experiences the largest tidal range difference in height between the high tide and low tide?...
Applications and Investigations in Earth Science (9th Edition)
WHAT IF? As a cell begins the process of dividing, its chromosomes become shorter, thicker, and individually vi...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A surveyor measures the distance across a straight river by the following method: Starting directly across from a tree on the opposite bank, he walks x = 97.7 m along the riverbank to establish a baseline. Then he sights across to the tree. The angle from his baseline to the tree is θ = 33.0 °. How wide is the river?arrow_forwardA small turtle moves at a speed of 697. furlong/fortnight. Find the speed of the turtle in centimeters per second. Note that 1.00 furlong = 220. yards, 1.00 yard = 3.00 feet, 1.00 foot = 12.0 inches, 1.00 inch = 2.54 cm, and 1.00 fortnight = 14.0 days.arrow_forwardThe landmass of Sokovia lifted in the air in Avengers: Age of Ultron had a volume of about 1.98 km3. What volume is that in m3?arrow_forward
- A fathom is a unit of length, usually reserved for measuring the depth of water. A fathom is exactly 6.00 ft in length. Take the distance from Earth to the Moon to be 252,000 miles, and use the given approximation to find the distance in fathoms. 1 mile = 5280 ft. (Answer in sig fig.)arrow_forwardNo chatgpt pls will upvotearrow_forwardOne of the earliest video games to have a plot, Zork, measured distances in “Bloits” where 1 Bloit was defined as the distance the king’s favorite pet could run in one hour, 1,090 m. In the same game the king has a statue made that is 9.00 Bloits high. What is this in meters?arrow_forward
- At point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?arrow_forwardMake a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).arrow_forwardLab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
AP Physics 2 - Geometric Optics: Mirrors and Lenses - Intro Lesson; Author: N. German;https://www.youtube.com/watch?v=unT297HdZC0;License: Standard YouTube License, CC-BY