(a)
The current in the circuit as a function of time.
(a)
Answer to Problem 72AP
The current in the circuit as a function of time is
Explanation of Solution
The circuit in which capacitor and inductor are short circuited and both the switch are closed is as shown below.
Figure-(1)
Write the expression to obtain the time varying voltage source.
Here,
Write the expression to obtain the current in the circuit as a function of time.
Here,
Substitute
Conclusion:
Therefore, the current in the circuit as a function of time is
(b)
The power delivered to the circuit.
(b)
Answer to Problem 72AP
The power delivered to the circuit is
Explanation of Solution
Write the expression to obtain the power delivered to the circuit.
Here,
Substitute
Conclusion:
Therefore, the power delivered to the circuit is
(c)
The current in the circuit as function of time if only switch
(c)
Answer to Problem 72AP
The current in the circuit as function of time if only switch
Explanation of Solution
The circuit in which switch
Figure-(2)
In case of inductor circuit, the phase difference between the current and voltage is
Write the expression to obtain the time varying voltage source in case
Here,
Write the expression to obtain the impedance in the circuit.
Here,
Write the expression to obtain the current in the circuit as a function of time.
Here,
Substitute
Conclusion:
Therefore, the current in the circuit as function of time if only switch
(d)
The capacitance of the capacitor when both the switches are closed and the current and voltage are in phase.
(d)
Answer to Problem 72AP
The capacitance of the capacitor when both the switches are open and the current and voltage are in phase is
Explanation of Solution
The circuit in which both the switches are open as shown in the figure below.
Figure-(3)
Write the expression obtain the impendence of the inductor.
Here,
Write the expression obtain the impendence of the capacitor.
Here,
When the current and voltage in the circuit are in phase, than the impendence of the inductor and the capacitor are equal.
Write the expression to obtain the relation the capacitance of the capacitor.
Here,
Substitute
Conclusion:
Therefore, the capacitance of the capacitor when both the switches are open and the current and voltage are in phase is
(e)
The impendence of the circuit when both the switches are open.
(e)
Answer to Problem 72AP
The impendence of the circuit when both the switches are open is
Explanation of Solution
Write the expression when both the switches are open.
Here,
Write the expression to obtain the impendence of the circuit.
Here,
Substitute
Conclusion:
Therefore, the impendence of the circuit when both the switches are open is
(f)
The maximum energy stored in the capacitor during the oscillations.
(f)
Answer to Problem 72AP
The maximum energy stored in the capacitor during the oscillations is
Explanation of Solution
Write the expression to obtain the voltage across the capacitor.
Here,
Substitute
Write the expression to obtain the maximum energy stored in the capacitor.
Here,
Substitute
Conclusion:
Therefore, the maximum energy stored in the capacitor during the oscillations is
(g)
The maximum energy stored in the inductor during the oscillations.
(g)
Answer to Problem 72AP
The maximum energy stored in the inductor during the oscillations is
Explanation of Solution
Write the expression to obtain the maximum energy stored in the inductor.
Here,
Substitute
Conclusion:
Therefore, the maximum energy stored in the inductor during the oscillations is
(h)
The phase difference between the current and the voltage when frequency of the voltage source is doubled.
(h)
Answer to Problem 72AP
The phase difference between the current and the voltage when frequency of the voltage source is doubled is
Explanation of Solution
Write the expression to obtain the phase difference between the current and voltage.
Here,
Substitute
As the frequency of the voltage source is doubled.
Substitute
Conclusion:
Therefore, the phase difference between the current and the voltage when frequency of the voltage source is doubled is
(i)
The frequency that makes the inductance reactance one-half the capacitive reactance.
(i)
Answer to Problem 72AP
The frequency that makes the inductance reactance one-half the capacitive reactance is
Explanation of Solution
Write the expression to obtain the frequency that makes the inductance reactance one-half the capacitive reactance.
Here,
Substitute
Conclusion:
Therefore, the frequency that makes the inductance reactance one-half the capacitive reactance is
Want to see more full solutions like this?
Chapter 33 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- Correct answer No chatgpt pls will upvotearrow_forwardStatistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forwardLab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forward
- Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardNo chatgpt pls will upvotearrow_forward
- A beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forwardAn aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forwardROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forward
- Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning