Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 27P
(a)
To determine
The inductive resistance of the circuit.
(b)
To determine
The capacitive resistance of the circuit.
(c)
To determine
The impedance of the circuit.
(d)
To determine
The resistance in the circuit.
(e)
To determine
The phase angle between the current and the source voltage.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 4.90 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 200 mA.
(a) Calculate the inductive reactance. Ω(b) Calculate the capacitive reactance. Ω(c) Calculate the impedance. kΩ(d) Calculate the resistance in the circuit. kΩ(e) Calculate the phase angle between the current and the source voltage. °
A series AC circuit contains a resistor, an inductor of 230 mH, a capacitor of 4.90 µF, and a generator with AV,
= 240 V operating at 50.0 Hz. The maximum current in the circuit is 110 mA.
max
(a) Calculate the inductive reactance.
Ω
(b) Calculate the capacitive reactance.
Ω
(c) Calculate the impedance.
(d) Calculate the resistance in the circuit.
(e) Calculate the phase angle between the current and the generator voltage.
A series AC circuit contains a resistor, an inductor of 240 mH, a capacitor of 4.10 μF, and a source with AV
= 240 V operating at 50.0 Hz. The maximum current in the circuit is 160 mA.
max
(a) Calculate the inductive reactance.
(b) Calculate the capacitive reactance.
n
(c) Calculate the impedance.
kn
(d) Calculate the resistance in the circuit.
(e) Calculate the phase angle between the current and the source voltage.
Chapter 33 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 33.2 - Consider the voltage phasor in Figure 32.4, shown...Ch. 33.3 - Consider the AC circuit in Figure 32.8. The...Ch. 33.4 - Consider the AC circuit in Figure 32.11. The...Ch. 33.4 - Consider the AC circuit in Figure 32.12. The...Ch. 33.5 - Label each part of Figure 32.16, (a), (b), and...Ch. 33.6 - Prob. 33.6QQCh. 33.7 - Prob. 33.7QQCh. 33 - Prob. 1OQCh. 33 - Prob. 2OQCh. 33 - Prob. 3OQ
Ch. 33 - Prob. 4OQCh. 33 - Prob. 5OQCh. 33 - Prob. 6OQCh. 33 - Prob. 7OQCh. 33 - A resistor, a capacitor, and an inductor are...Ch. 33 - Under what conditions is the impedance of a series...Ch. 33 - Prob. 10OQCh. 33 - Prob. 11OQCh. 33 - Prob. 12OQCh. 33 - Prob. 13OQCh. 33 - Prob. 1CQCh. 33 - Prob. 2CQCh. 33 - Prob. 3CQCh. 33 - Prob. 4CQCh. 33 - Prob. 5CQCh. 33 - Prob. 6CQCh. 33 - Prob. 7CQCh. 33 - Prob. 8CQCh. 33 - Prob. 9CQCh. 33 - Prob. 10CQCh. 33 - Prob. 1PCh. 33 - (a) What is the resistance of a lightbulb that...Ch. 33 - Prob. 3PCh. 33 - Prob. 4PCh. 33 - Prob. 5PCh. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - An AC source has an output rms voltage of 78.0 V...Ch. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - An AC source with an output rms voltage of 86.0 V...Ch. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - Prob. 22PCh. 33 - What is the maximum current in a 2.20-F capacitor...Ch. 33 - Prob. 24PCh. 33 - In addition to phasor diagrams showing voltages...Ch. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - Prob. 28PCh. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - A 60.0-ft resistor is connected in series with a...Ch. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - A series RLC circuit has a resistance of 45.0 and...Ch. 33 - Prob. 36PCh. 33 - Prob. 37PCh. 33 - An AC voltage of the form v = 90.0 sin 350t, where...Ch. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - Prob. 41PCh. 33 - A series RLC circuit has components with the...Ch. 33 - Prob. 43PCh. 33 - Prob. 44PCh. 33 - A 10.0- resistor, 10.0-mH inductor, and 100-F...Ch. 33 - Prob. 46PCh. 33 - Prob. 47PCh. 33 - Prob. 48PCh. 33 - The primary coil of a transformer has N1 = 350...Ch. 33 - A transmission line that has a resistance per unit...Ch. 33 - Prob. 51PCh. 33 - Prob. 52PCh. 33 - Prob. 53PCh. 33 - Consider the RC highpass filter circuit shown in...Ch. 33 - Prob. 55PCh. 33 - Prob. 56PCh. 33 - Prob. 57APCh. 33 - Prob. 58APCh. 33 - Prob. 59APCh. 33 - Prob. 60APCh. 33 - Prob. 61APCh. 33 - Prob. 62APCh. 33 - Prob. 63APCh. 33 - Prob. 64APCh. 33 - Prob. 65APCh. 33 - Prob. 66APCh. 33 - Prob. 67APCh. 33 - Prob. 68APCh. 33 - Prob. 69APCh. 33 - (a) Sketch a graph of the phase angle for an RLC...Ch. 33 - Prob. 71APCh. 33 - Prob. 72APCh. 33 - A series RLC circuit contains the following...Ch. 33 - Prob. 74APCh. 33 - Prob. 75APCh. 33 - A series RLC circuit in which R = l.00 , L = 1.00...Ch. 33 - Prob. 77CPCh. 33 - Prob. 78CPCh. 33 - Prob. 79CPCh. 33 - Figure P33.80a shows a parallel RLC circuit. The...Ch. 33 - Prob. 81CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In a purely inductive AC circuit as shown in Figure P21.15, Vmax = 100. V. (a) The maximum current is 7.50 A at 50.0 Hz. Calculate the inductance L. (b) At what angular frequency is the maximum current 2.50A? Figure p21.15arrow_forwardA 1.5k resistor and 30-mH inductor are connected in series, as below, across a120-V(rms)ac power source oscillating at 60-Hz frequency. (a) Find the current in the circuit. (b) Find the voltage drops across the resistor and inductor. (C) Find the impedance of the circuit. (d) Find the power dissipated in the resistor. (e) Find the power dissipated in the inductor. (1) Find the power produced by the source.arrow_forwardThe emf of an ac source is given by v(t)=V0sint, where V0=100V and =200 . Find an expression that represents the output current of the source if it is connected across (a) a 20-pF capacitor, (b) a 20-mH inductor, and (c) a 50 resistor.arrow_forward
- An RLC series circuit consists of a 50 resistor, a 200F capacitor, and a 120-mN inductor whose coil has a resistance of 20. The source for the circuit has an tins emf of 240 V at a frequency of 60 Hz. Calculate the tins voltages across the (a) resistor, (b) capacitor, and (c) inductor.arrow_forwardA series RLC circuit has resistance R = 50.0 and inductance L. = 0.500 H. (a) Find the circuits capacitance C if the voltage source operates at a frequency of f = 60.0 Hz and the impedance is Z = R = 50.0 . (b) What is the phase angle between the current and the voltage?arrow_forwardIn a purely inductive AC circuit as shown in Figure P32.6, Vmax = 100 V. (a) The maximum current is 7.50 A at 50.0 Hz. Calculate the inductance L. (b) What If? At what angular frequency is the maximum current 2.50 A? Figure P32.6 Problem 6 and 7.arrow_forward
- Problems 71 and 72 paired. Figure P33.71 shows a series RLC circuit with a 25.0- resistor, a 430.0-mH inductor, and a 24.0-F capacitor connected to an AC source with Vmax = 60.0 V operating at 60.0 Hz. What is the maximum voltage across the a. resistor, b. inductor, and c. capacitor in the circuit? FIGURE P33.71 Problems 71 and 72.arrow_forwardAn inductor and a resistor are connected in series across an AC source as in Figure OQ33.1. Immediately after the switch is closed, which of the following statements is true? (a) The current in the circuit is V/R. (b) The voltage across the inductor is zero, (c) The current in the circuit is zero, (d) The voltage across the resistor is V (e) The voltage across the inductor is half its maximum value.arrow_forwardA series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 4.50 µF, and a source with AV = 240 V operating max at 50.0 Hz. The maximum current in the circuit is 150 mA. (a) Calculate the inductive reactance. Ω (b) Calculate the capacitive reactance. Ω (c) Calculate the impedance. (d) Calculate the resistance in the circuit. (e) Calculate the phase angle between the current and the source voltage.arrow_forward
- A series AC circuit contains a resistor, an inductor of 150 mH, a capacitor of 5.00 μF, and a generator with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 100 mA. Calculate (a) the inductive reactance, (b) the capacitive reactance, (c) the impedance, (d) the resistance in the circuit, and (e) the phase angle between the current and the generator voltage.arrow_forwardA series AC circuit contains a resistor, an inductor of 240 mH, a capacitor of 6.00 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 130 mA. Calculate the inductive reactance, capacitive reactance, impedance, resistance in the circuit, phase angle between the current and the source voltage.arrow_forwardA series AC circuit contains a resistor, an inductor of 240 mH, a capacitor of 5.90 µF, and a source with AVay = 240 V operating at 50.0 Hz. The maximum current in the circuit is 150 mA. (a) Calculate the inductive reactance. (b) Calculate the capacitive reactance. (c) Calculate the impedance. (d) Calculate the resistance in the circuit. (e) Calculate the phase angle between the current and the source voltage.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY