PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 28EAP
Your artist friend is designing an exhibit inspired by circular- aperture diffraction. A pinhole in a red zone is going to be illuminated with a red laser beam of wavelength 670 nm, while a pinhole in a violet zone is going to be illuminated with a violet laser beam of wavelength 410 nm. She wants all the diffraction patterns seen on a distant screen to have the same size. For this to work, what must be the ratio of the red pinhole’s diameter to that of the violet pinhole?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Your physics study partner tells you that the width of the central bright band in a single-slit diffraction pattern is inversely proportional to the width of the slit. This means that the width of the central maximum increases when the width of the slit decreases. The claim seems counterintuitive to you, so you make measurements to test it. You shine monochromatic laser light with wavelength λ onto a very narrow slit of width a and measure the width w of the central maximum in the diffraction pattern that is produced on a screen 1.50 m from the slit. (By “width,” you mean the distance on the screen between the two minima on either side of the central maximum.) Your measurements are given in the table. (a) If w is inversely proportional to a, then the product aw is constant, independent of a. For the data in the table, graph aw versus a. Explain why aw is not constant for smaller values of a. (b) Use your graph in part (a) to calculate the wavelength λ of the laser light. (c) What is…
Babinet's principle says that the diffraction pattern observed when light falls on an aperture of any shape is the same as that obtained when light falls on an object that is the complement of such aperture. A laser with a wavelength of 600 nm is incident on a hair, generating a diffraction pattern with a width of the principal maximum of 10 mm on a screen located 1 m away from the hair. What is the diameter of this wire?
Diffraction can be used to provide a quick test of the size of red blood cells. Blood is smeared onto a slide, and a laser shines through the slide. The size of the cells is very consistent, so the multiple diffraction patterns overlap and produce an overall pattern that is similar to what a single cell would produce. Ideally, the diameter of a red blood cell should be between 7.5 and 8.0 μm. If a 633 nm laser shines through a slide and produces a pattern on a screen 24.0 cm distant, what range of sizes of the central maximum should be expected? Values outside this range might indicate a health concern and warrant further study.
Chapter 33 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 33 - Prob. 1CQCh. 33 - In a double-slit interference experiment, which of...Ch. 33 - FIGURE Q33.3 shows the viewing screen in a...Ch. 33 - FIGURE Q33.3 is the interference pattern seen on a...Ch. 33 - FIGURE Q33.5 shows the light intensity on a...Ch. 33 - FIGURE Q33.6 shows the light intensity on a...Ch. 33 - Narrow, bright fringes are observed on a screen...Ch. 33 - a. Green light shines through a 100-mm-diameter...Ch. 33 - A Michelson interferometer using 800 nm light is...Ch. 33 - Prob. 10CQ
Ch. 33 - Prob. 1EAPCh. 33 - Prob. 2EAPCh. 33 - Prob. 3EAPCh. 33 - Prob. 4EAPCh. 33 - Light of 630 nm wavelength illuminates two slits...Ch. 33 - Prob. 6EAPCh. 33 - Light from a sodium lamp (=589nm) illuminates two...Ch. 33 - A double-slit interference pattern is created by...Ch. 33 - Prob. 9EAPCh. 33 - Light of wavelength 620 nm illuminates a...Ch. 33 - A diffraction grating produces a first-order...Ch. 33 - Prob. 12EAPCh. 33 - The two most prominent wavelengths in the light...Ch. 33 - Prob. 14EAPCh. 33 - Prob. 15EAPCh. 33 - A helium-neon laser (=633nm) illuminates a single...Ch. 33 - Prob. 17EAPCh. 33 - A 050-mm-wide slit is illuminated by light of...Ch. 33 - 19. You need to use your cell phone, which...Ch. 33 - For what slit-width-to-wavelength ratio does the...Ch. 33 - Light from a helium-neon laser ( = 633 nm) is...Ch. 33 - A laser beam illuminates a single, narrow slit,...Ch. 33 - m-wide slits spaced 0.25 mm apart are illuminated...Ch. 33 - Prob. 24EAPCh. 33 - A 0.50-mm-diameter hole is illuminated by light of...Ch. 33 - Prob. 26EAPCh. 33 - Prob. 27EAPCh. 33 - Your artist friend is designing an exhibit...Ch. 33 - Prob. 29EAPCh. 33 - Prob. 30EAPCh. 33 - Prob. 31EAPCh. 33 - A Michelson interferometer uses light from a...Ch. 33 - FIGURE P33.33 shows the light intensity on a...Ch. 33 - FIGURE P33.34 shows the light intensity en a...Ch. 33 - Prob. 35EAPCh. 33 - Prob. 36EAPCh. 33 - Prob. 37EAPCh. 33 - Prob. 38EAPCh. 33 - Prob. 39EAPCh. 33 - Prob. 40EAPCh. 33 - A triple-slit experiment consists of three narrow...Ch. 33 - Because sound is a wave, it’s possible to make a...Ch. 33 - A diffraction grating with 600 lines/mm is...Ch. 33 - Prob. 44EAPCh. 33 - Prob. 45EAPCh. 33 - A chemist identifies compounds by identifying...Ch. 33 - Prob. 47EAPCh. 33 - For your science fair project you need to design a...Ch. 33 - Prob. 49EAPCh. 33 - Prob. 50EAPCh. 33 - Light from a sodium lamp ( =589 nm) illuminates a...Ch. 33 - The wings of some beetles have closely spaced...Ch. 33 - Prob. 53EAPCh. 33 - Prob. 54EAPCh. 33 - A diffraction grating has slit spacing d. Fringes...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - A student performing a double-slit experiment is...Ch. 33 - Scientists shine a laser beam on a 35- m-wide...Ch. 33 - Light from a helium-neon laser ( =633 nm)...Ch. 33 - Prob. 62EAPCh. 33 - Prob. 63EAPCh. 33 - Prob. 64EAPCh. 33 - Scientists use laser range-finding to measure the...Ch. 33 - Prob. 66EAPCh. 33 - Prob. 67EAPCh. 33 - Prob. 68EAPCh. 33 - Prob. 69EAPCh. 33 - Prob. 70EAPCh. 33 - Prob. 71EAPCh. 33 - Prob. 72EAPCh. 33 - Prob. 73EAPCh. 33 - FIGURE CP33.74 shows light of wavelength ?...Ch. 33 - Prob. 75EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Although we have discussed single-slit diffraction only for a slit, a similar result holds when light bends around a straight, thin object, such as a strand of hair. In that case, a is the width of the strand. From actual lab measurements on a human hair, it was found that when a beam of light of wavelength 632.8nm was shone on a single strand of hair, and the diffracted light was viewed on a screen 1.25m away, the first dark fringes on either side of the central bright spot were 5.22cm apart. How thick was this strand of hair?arrow_forwardIn the laser range-finding experiments, the laser beam fired toward the moon spreads out as it travels because it diffracts through a circular exit as it leaves the laser. In order for the reflected light to be bright enough to detect, the laser spot on the moon must be no more than 1 km in diameter. Staying within this diameter is accomplished by using a special large-diameter laser.If λ = 532 nm, what is the minimum diameter of the circular opening from which the laser beam emerges? The earth-moon distance is 384,000 km.arrow_forwardA telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the Moon. If this is done with the Mount Wilson telescope, producing a 2.54 m diameter beam of 613 nm light, what is the minimum angular spread of the beam? Neglecting atmospheric effects, what is the size of the spot this beam would make on the Moon, assuming a lunar distance of 3.84×108 m?arrow_forward
- A circular hole is made in a thin opaque sheet. You observe the diffraction pattern made by shining collimated laser light of wavelength 490 nm onto the aperture. Looking at a screen 1.31 m distant from the aperture, you observe a ring of darkness at a radius 10.4 cm relative to the circle centre (corresponding to the place where laser light would hit the screen if there was no aperture). What is the diameter of the hole in microns?arrow_forwardA telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the Moon. If this is done with the Otto Struve telescope, producing a 2.10 m diameter beam of 613 nm light, what is the minimum angular spread of the beam? minimum angular spread: rad Neglecting atmospheric effects, what is the size of the spot this beam would make on the Moon, assuming a lunar distance of 3.84×108 m? size of spot on the Moon:arrow_forwardA parallel laser beam of wavelength 633 nm is passed through a single narrow slit of width 0.1 mm, and the diffraction pattern is observed on a screen at distance 5 m. Calculate the width of the main intensity peak, defined as the distance between the two dark points on either side; give your answer in mm to 1 d.p.arrow_forward
- In the figure, first-order reflection from the reflection planes shown occurs when an x-ray beam of wavelength 0.820 nm makes an angle θ = 62.3˚ with the top face of the crystal. What is the unit cell size a0?arrow_forwardYour friend has been given a laser for her birthday. Unfortunately, she did not receive a manual with it and so she doesn't know the wavelength that it emits. You help her by performing a double-slit experiment, with slits separated by 0.36 mm. You find that the two m=1 bright fringes are 5.5 mm apart on a screen 1.6 mm from the slits. What is the wavelength the laser emits?arrow_forwardLight with wavelength i passes through a narrow slit of width w and is seen on a screen which is located at a distance D in front of the slit. The first minimum of the diffraction pattern is at distance d from the middle of the central maximum. Calculate the wavelength of light if D=2.5 VAD. Give your answer in nanometprs. m, d=1 mm and w = Answer: Choose...arrow_forward
- First-order Bragg scattering from a certain crystal occurs at an angle of incidence of 63.8°; see figure below. The wavelength of the x-rays is 0.261nm. Assuming that the scattering is from the dashed planes shown, find the unit cell size ao. 63.8° X raysarrow_forwardYou stretch a strand of your hair across a laser beam and observe the diffraction pattern this produces on a sheet of paper 1.15 m from your hair strand. You mark the center of the dark regions on either side of the central bright spot and measure the distance between these marks to be 21.4 mm. You are given that the wavelength of the laser light is 633 nm. What is the diameter of your hair strand (in mm)? Make use of the small angle approximation. (Hint: recall Babinet's principle which equates the spot pattern created by light going around the hair to the pattern when light goes through a slit.)arrow_forwardYou stretch a strand of your hair across a laser beam and observe the diffraction pattern this produces on a sheet of paper 1.30 m from your hair strand. You mark the center of the dark regions on either side of the central bright spot and measure the distance between these marks to be 23.4 mm. You are given that the wavelength of the laser light is 633 nm. What is the diameter of your hair strand (in mm)? Make use of the small angle approximation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY