PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Light with a wavelength of 646 nm passes through two slits and forms an interference pattern on a screen 8.75 m away. The distance between the two second- order bright fringe is 10.32 cm. What will be the distance between the central bright fringe and the third-order minimum?
Using a 685 nm wavelength laser, you form the diffraction pattern of a 1.01 mm wide slit on a screen. You measure on the screen that the 15th dark fringe is 9.23 cm away from the center of the central maximum. How far is the screen located from the slit?
The distance between two slits is 1.50 × 10-5 m. A beam of coherent light of wavelength 600 nm
illuminates these slits, and the distance between the slit and the screen is 2.00 m. What is the
distance on the screen between the central bright fringe and the fourth-order bright fringe?
Chapter 33 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 33 - Prob. 1CQCh. 33 - In a double-slit interference experiment, which of...Ch. 33 - FIGURE Q33.3 shows the viewing screen in a...Ch. 33 - FIGURE Q33.3 is the interference pattern seen on a...Ch. 33 - FIGURE Q33.5 shows the light intensity on a...Ch. 33 - FIGURE Q33.6 shows the light intensity on a...Ch. 33 - Narrow, bright fringes are observed on a screen...Ch. 33 - a. Green light shines through a 100-mm-diameter...Ch. 33 - A Michelson interferometer using 800 nm light is...Ch. 33 - Prob. 10CQ
Ch. 33 - Prob. 1EAPCh. 33 - Prob. 2EAPCh. 33 - Prob. 3EAPCh. 33 - Prob. 4EAPCh. 33 - Light of 630 nm wavelength illuminates two slits...Ch. 33 - Prob. 6EAPCh. 33 - Light from a sodium lamp (=589nm) illuminates two...Ch. 33 - A double-slit interference pattern is created by...Ch. 33 - Prob. 9EAPCh. 33 - Light of wavelength 620 nm illuminates a...Ch. 33 - A diffraction grating produces a first-order...Ch. 33 - Prob. 12EAPCh. 33 - The two most prominent wavelengths in the light...Ch. 33 - Prob. 14EAPCh. 33 - Prob. 15EAPCh. 33 - A helium-neon laser (=633nm) illuminates a single...Ch. 33 - Prob. 17EAPCh. 33 - A 050-mm-wide slit is illuminated by light of...Ch. 33 - 19. You need to use your cell phone, which...Ch. 33 - For what slit-width-to-wavelength ratio does the...Ch. 33 - Light from a helium-neon laser ( = 633 nm) is...Ch. 33 - A laser beam illuminates a single, narrow slit,...Ch. 33 - m-wide slits spaced 0.25 mm apart are illuminated...Ch. 33 - Prob. 24EAPCh. 33 - A 0.50-mm-diameter hole is illuminated by light of...Ch. 33 - Prob. 26EAPCh. 33 - Prob. 27EAPCh. 33 - Your artist friend is designing an exhibit...Ch. 33 - Prob. 29EAPCh. 33 - Prob. 30EAPCh. 33 - Prob. 31EAPCh. 33 - A Michelson interferometer uses light from a...Ch. 33 - FIGURE P33.33 shows the light intensity on a...Ch. 33 - FIGURE P33.34 shows the light intensity en a...Ch. 33 - Prob. 35EAPCh. 33 - Prob. 36EAPCh. 33 - Prob. 37EAPCh. 33 - Prob. 38EAPCh. 33 - Prob. 39EAPCh. 33 - Prob. 40EAPCh. 33 - A triple-slit experiment consists of three narrow...Ch. 33 - Because sound is a wave, it’s possible to make a...Ch. 33 - A diffraction grating with 600 lines/mm is...Ch. 33 - Prob. 44EAPCh. 33 - Prob. 45EAPCh. 33 - A chemist identifies compounds by identifying...Ch. 33 - Prob. 47EAPCh. 33 - For your science fair project you need to design a...Ch. 33 - Prob. 49EAPCh. 33 - Prob. 50EAPCh. 33 - Light from a sodium lamp ( =589 nm) illuminates a...Ch. 33 - The wings of some beetles have closely spaced...Ch. 33 - Prob. 53EAPCh. 33 - Prob. 54EAPCh. 33 - A diffraction grating has slit spacing d. Fringes...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - A student performing a double-slit experiment is...Ch. 33 - Scientists shine a laser beam on a 35- m-wide...Ch. 33 - Light from a helium-neon laser ( =633 nm)...Ch. 33 - Prob. 62EAPCh. 33 - Prob. 63EAPCh. 33 - Prob. 64EAPCh. 33 - Scientists use laser range-finding to measure the...Ch. 33 - Prob. 66EAPCh. 33 - Prob. 67EAPCh. 33 - Prob. 68EAPCh. 33 - Prob. 69EAPCh. 33 - Prob. 70EAPCh. 33 - Prob. 71EAPCh. 33 - Prob. 72EAPCh. 33 - Prob. 73EAPCh. 33 - FIGURE CP33.74 shows light of wavelength ?...Ch. 33 - Prob. 75EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the angular width of the central fringe of the interference pattern of (a) 20 slits separated by d=2.0103 mm? (b) 50 slits with the same separation? Assume that =600 nm.arrow_forwardEight slits equally separated by 0.149 mm is uniformly illuminated by a monochromatic light at =523 nm. What is the width of the central principal maximum on a screen 2.35 m away?arrow_forwardIn Figure P27.7 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4?arrow_forward
- When a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forwardMonochromatic light is incident on a pair of slits that are separated by 0.200 mm. The screen is 2.50 m away from the slits. a. If the distance between the central bright fringe and either of the adjacent bright fringes is 1.67 cm, find the wavelength of the incident light. b. At what angle does the next set of bright fringes appear?arrow_forwardConsider a single-slit diffraction pattern for =589 nm, projected on a screen that is 1.00 m from a slit of width 0.25 mm. How far from the center of the pattern are the centers of the first and second dark fringes?arrow_forward
- A hydrogen gas discharge lamp emits visible light at four wavelengths, =410 , 434, 486, and 656 nm. (a) If light from this lamp falls on a N slits separated by 0.025 mm, how far from the central maximum are the third maxima when viewed on a screen 2.0 m from the slits? (b) By what distance are the second and third maxima separated for l=486 nm?arrow_forwardMonochromatic light of wavelength 530 nm passes through a horizontal single slit of width 1.5 m in an opaque plate. A screen of dimensions 2.0m2.0m is 1.2 m away from the slit. (a) Which way is the diffraction pattern spread out on the screen? (b) What are the angles of the minima with respect to the center? (c) What are the angles of the maxima? (d) How wide is the central bright fringe on the screen? (e) How wide is the next bright fringe on the screen?arrow_forwardCoherent light rays of wavelength strike a pair of slits separated by distance d at an angle 1, with respect to the normal to the plane containing the slits as shown in Figure P27.14. The rays leaving the slits make an angle 2 with respect to the normal, and an interference maximum is formed by those rays on a screen that is a great distance from the slits. Show that the angle 2 is given by 2=sin1(sin1md) where m is an integer.arrow_forward
- For 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forwardShow that the distribution of intensity in a double-slit pattern is given by Equation 36.9. Begin by assuming that the total magnitude of the electric field at point P on the screen in Figure 36.4 is the superposition of two waves, with electric field magnitudes E1=E0sintE2=E0sin(t+) The phase angle in in E2 is due to the extra path length traveled by the lower beam in Figure 36.4. Recall from Equation 33.27 that the intensity of light is proportional to the square of the amplitude of the electric field. In addition, the apparent intensity of the pattern is the time-averaged intensity of the electromagnetic wave. You will need to evaluate the integral of the square of the sine function over one period. Refer to Figure 32.5 for an easy way to perform this evaluation. You will also need the trigonometric identity sinA+sinB=2sin(A+B2)cos(AB2)arrow_forwardTwo slits of width 2 m, each in an opaque material, are separated by a center-to-center distance of 6 m. A monochromatic light of wavelength 450 nm is incident on the double-slit. One finds a combined interference and diffraction pattern on the screen. (a) How many peaks of the interference will be observed in the central maximum of the diffraction pattern? (b) How many peaks of the interference will be observed if the slit width is doubled while keeping the distance between the slits same? (c) How many peaks of interference will be observed if the slits are separated by twice the distance, that is, 12 m, while keeping the widths of the slits same? (d) What will happen in (a) if instead of 450-nm light another light of wavelength 680 nm is used? (e) What is the value of the ratio of the intensity of the central peak to the intensity of the next bright peak in (a)? (f) Does this ratio depend on the wavelength of the light? (g) Does this ratio depend on the width or separation of the slits?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY