EBK AUTOMOTIVE TECHNOLOGY: A SYSTEMS AP
6th Edition
ISBN: 8220100474392
Author: ERJAVEC
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 9RQ
To determine
The reason for not needing a wastegate on a supercharger.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Please.... please, provide me with full calculation (more details) because this question I sent it previously but I did not receive a good result yet.
Generalized Machine Theory
Attempt ALL Questions.
Q1. (a) Explain and illustrate the object of the performance analysis of any type of
machine by unified theory.
[8M]
P10-21 When the impurity cumene hydroperoxide is present in trace amounts in a cumene feed stream, it can
deactivate the silica-alumina catalyst over which cumene is being cracked to form benzene and propy-
lene. The following data were taken at 1 atm and 420°C in a differential reactor. The feed consists of
cumene and a trace (0.08 mol %) of cumene hydroperoxide (CHP).
Benzene in Exit
Stream (mol %)
1 (8)
2 1.62 1.31 1.06 0.85 0.56 0.37 0.24
0 50 100 150 200 300 400 500
==
(a) Determine the order of decay and the decay constant. (Ans.: kg 4,27 x 10-3 s)
(b) As a first approximation (actually a rather good one), we shall neglect the denominator of the cat-
alytic rate law and consider the reaction to be first order in cumene. Given that the specific reac-
tion rate with respect to cumene is k = 3.8 X 103 mol/kg fresh cat s atm, the molar flow rate of
cumene (99.92% cumene, 0.08% CHP) is 200 mol/min, the entering concentration is 0.06
kmol/m³, the catalyst weight is 100 kg, and the…
Chapter 32 Solutions
EBK AUTOMOTIVE TECHNOLOGY: A SYSTEMS AP
Ch. 32 - What is the difference between psia and psig...Ch. 32 - What can be used to check for a restricted exhaust...Ch. 32 - A mini-converter is used _____. a. on small...Ch. 32 - True or False? Engine misfires can cause a...Ch. 32 - What is acoustic supercharging?Ch. 32 - Describe the basic operation of an intake manifold...Ch. 32 - Prob. 7RQCh. 32 - True or False? All wastegates are controlled by...Ch. 32 - Prob. 9RQCh. 32 - A restricted exhaust system can cause______. a....
Ch. 32 - Which of the following is not characteristic of a...Ch. 32 - Ten psi of turbo boost means that air is being fed...Ch. 32 - What manages turbo output by controlling the...Ch. 32 - What is the first step in turbocharger inspection?...Ch. 32 - Prob. 15RQCh. 32 - Technician A says that a turbocharger has its own...Ch. 32 - Technician A makes sure that the exhaust system is...Ch. 32 - Technician A says vacuum refers to any pressure...Ch. 32 - Technician A uses sandpaper to remove carbon...Ch. 32 - Technician A says that a vacuum leak results in...Ch. 32 - Technician A says that vacuum hose routing for the...Ch. 32 - Before replacing any exhaust system component:...Ch. 32 - A vehicles intake manifold is warped: Technician A...Ch. 32 - Technician A says that the catalytic converter is...Ch. 32 - Technician A says that the exhaust manifold gasket...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- ICG Heterogeneous Catalysis Performance P10-3 t-Butyl alcohol (TBA) is an important octane enhancer that is used to replace lead additives in gasoline [Ind. Eng. Chem. Res., 27, 2224 (1988)]. TBA was produced by the liquid-phase hydration (W) of isobutene (I) over an Amberlyst-15 catalyst. The system is normally a multiphase mixture of hydrocar- bon, water, and solid catalysts. However, the use of cosolvents or excess TBA can achieve reasonable miscibility. The reaction mechanism is believed to be Derive a rate law assuming: I S (P10-3.1) I+S W.S (P10-3.2) WSZ W S+I SE TBA S+S (P10-3.3) TBA SZ TBA + S (P10-3.4) (a) The surface reaction is rate-limiting. (b) The adsorption of isobutene is limiting. (c) The reaction follows Eley-Rideal kinetics I SW TBA S (P10-3.5) and the surface reaction is limiting. (d) Isobutene (1) and water (W) are adsorbed on different sites. T + S₁ W + S₂ W. S₂ TBA is not on the surface, and the surface reaction is rate-limiting. Ans.: TBA=-= [CCW-CTBA/K]…arrow_forwardof cat- The cat- metric ength wate)? of the nds? the rate law is h. Redo parts (b) and (c) for these conditions. P10-20, The vapor-phase cracking of gas-oil in Example 10-6 is carried out over a different catalyst, for which would you recommend? with '=5x10-5 kmol kg-cat-s-atm (a) Assuming that you can vary the entering pressure and gas velocity, what operating conditions (b) What could go wrong with the conditions you chose? Now assume the decay law is da dt = kpacite with kp=100 dm³ at 400°C mol-s where the concentration, Cenke, in mol/dm³, can be determined from a stoichiometric table. (c) For a temperature of 400°C and a reactor height of 15 m, what gas velocity do you recommend? (d) The reaction is now to be carried in an STTR 15 m high and 1.5 m in diameter. The gas velocity is 2.5 m/s. You can operate in the temperature range between 100 and 500°C. What temperature do you choose, and what is the corresponding conversion? (e) What would the temperature-time trajectory look like…arrow_forwardi need perfect solution with more detailsarrow_forward
- Generalized Machine Theory Attempt ALL Questions. Q1. (a) Explain and illustrate the object of the performance analysis of any type of machine by unified theory. [8M]arrow_forwardi need perfect resultsarrow_forwardQ2/ Power-law film flow. Consider the film flow of a power-law fluid with parameters к and n and density p down a plate inclined at angle with respect to the horizontal. If the film thickness is H: a. Derive an expression for the resulting velocity profile v as a function of y (distance from the plate), H, K, n, g, p, and b. Sketch three representative velocity profiles (each having, for simplicity, the same maximum velocity, which in practice would mean different values of к), for n 1, and comment briefly on the important features. C. Derive an expression for the volumetric flow rate of the liquid per unit width of the plate. Check your answer against the known expression for a Newtonian fluid: Q= H3pg sin 37arrow_forward
- Q8/ Non-Newtonian fluid characterization. A non-Newtonian liquid is tested by placing it between the two concentric cylinders of a viscometer. Since the gap h between the two surfaces is very small, they may be approximated by two planes as shown in Fig.3, one surface being stationary and the other moving. The instrument essentially measures the shear stresses t (Tx)y-h needed to move the upper plate at a variety of steady velocities V. Fig.3 Opposed surfaces of a viscometer. Explain in detail how you would discover the model to which the liquid conforms-it may be either a power-law fluid or a Bingham plastic and how you could determine from the data the two parameters (such as к and n, or to and n) for either model. Use the symbols for the rate of strain dvx/dy.arrow_forwardQ2/ Derive Von-Karman Eqn which is given in lecture and derive velocity profile for T-flow through the pipe as: Where a radius and r is the distance from 1 V₁ = (V₂)=0+ Tw + In - a the center.arrow_forwardMCQarrow_forward
- Dr -1 Homework: ANOVA Table for followed design A -1 B AB 1 (15,18,12) 1 -1 -1 (45,48,51) -1 -1 (25,28,19) 1 1 1 (75,75,81)arrow_forwardWhat is the reason for this composition?arrow_forward15.6. We want to model the flow of fluid in a flow channel. For this we locate three measuring points A, B, and C, 100 m apart along the flow channel. We inject tracer upstream of point A, fluid flows past points A, B, and C with the following results: At A the tracer width is 2 m At B the tracer width is 10 m At C the tracer width is 14 m What type of flow model would you try to use to represent this flow: dispersion, convective, tanks-in-series, or none of these? Give a reason for your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The