Concept explainers
(a)
The focal length of eyepiece.
(a)
Explanation of Solution
Given:
Magnifying power of microscope is
The angular magnification of eyepiece is
The distance of objective lens from eyepiece is
Formula used:
Write expression for angular magnification of eyepiece.
Here,
Calculation:
Substitute
Conclusion:
Thus, the focal length of eyepiece is
(b)
The location object so that it is in focus for normal eye.
(b)
Explanation of Solution
Given:
Magnifying power of microscope is
The angular magnification of eyepiece is
The distance of objective lens from eyepiece is
Formula used:
Write expression for angular magnification of eyepiece.
Here,
Write expression for image distance.
Write expression for magnifying power of microscope.
Rearrange above expression for
Substitute
Substitute
Rearrange above expression for
Calculation:
Substitute
Substitute
Conclusion:
Thus, the object is
(c)
The focal length of objective lens.
(c)
Explanation of Solution
Given:
Magnifying power of microscope is
The angular magnification of eyepiece is
The distance of objective lens from eyepiece is
Formula used:
Write expression for angular magnification of eyepiece.
Here,
Write expression for image distance.
Write expression for magnifying power of microscope.
Rearrange above expression for
Substitute
Substitute
Rearrange above expression for
Write expression for lens equation for objective lens.
Calculation:
Substitute
Substitute
Substitute
Conclusion:
Thus, the focal length of objective lens is
Want to see more full solutions like this?
Chapter 32 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning