A Figure P32.74 shows an N-turn rectangular coil of length a and width b entering a region of uniform magnetic field of magnitude Bout directed out of the page. The velocity of the coil is constant and is upward in the figure. The total resistance of the coil is R. What are the magnitude and direction of the magnetic force on the coil a. when only a portion of the coil has entered the region with the field, b. when the coil is completely embedded in the field, and c. as the coil begins to exit the region with the field?
(a)
The magnitude and direction of the magnetic force on the coil when a portion of the coil enters the region of the field.
Answer to Problem 74PQ
The magnitude of the magnetic force on the coil when a portion of the coil enters the region of the field is
Explanation of Solution
Faraday’s law states that an emf is induced in a coil when the magnetic flux linked with the coil changes.
The direction of the induced emf is given by Lenz law. Lenz law states that the current induced in a circuit due to change or a motion in the magnetic field, opposes the change in flux and exerts a mechanical force opposing the motion.
A current carrying conductor experiences a force in a magnetic field. Thus, the conductor experiences a force due to the current induced in it.
A coil ABCD of
The coil moves with a constant velocity
Figure-(1)
Write the expression for the induced emf entering the magnetic field.
Write the expression for magnitude of the induced current in the coil.
Here,
Substitute equation (I) in the above equation to find
The flux entering the coil increases, as the coil enters the magnetic field. According to Lenz law, the current in the segment which enters the field, flows towards the right, from point A to point B.
Write the expression for force experienced by the segment due to current flowing in the coil.
According to the right hand screw rule, the force acts perpendicular to both the direction of current and the magnetic field. Therefore, the force acts downwards.
Write the expression for magnitude of the force.
Substitute equation (II) in the above equation to find
Conclusion:
Therefore, the magnitude of the magnetic force on the coil, when a portion of the coil enters the region of the field is
(b)
The magnitude and direction of the magnetic force on the coil when the coil is completely embedded in the field.
Answer to Problem 74PQ
The magnitude of the force on the coil when it is completely embedded in the magnetic field is
Explanation of Solution
As shown in Figure-(2), the coil is completely embedded in the field.
Figure-(2)
According to Faraday’s law of electromagnetic induction, the emf induced in the coil is
There is no current flow in the coil, when the induced emf is
Conclusion:
Therefore, the magnetic force on the coil when it is completely embedded in the magnetic field is
(c)
The magnitude and direction of the magnetic force on the coil as the coil begins to exit the region of the field.
Answer to Problem 74PQ
The magnitude of the magnetic force on the coil, when a portion of the coil exits the region of the field is
Explanation of Solution
The outward flux through the coil decreases, as the coil begins to exit the field. The current flows in the counter clockwise direction in the coil. The current flows from point D to point C as shown in figure-(3).
Figure-(3)
The magnitude of the current in the coil remains the same as it is when the coil enters the field, as the coil moves with the same constant speed. The direction of the current flowing in the coil, when it exits the field, is opposite to the direction of the current when the coil enters the field.
Write the expression for the current in the coil when it exits the magnetic field.
Write the expression for magnitude of the force experienced by the coil.
The magnitude of the force experienced by the coil, when it exits the field is same as, when it enters the field.
The force acts downwards along the plane of the paper.
Conclusion:
Therefore, the magnitude of the magnetic force on the coil, when a portion of the coil exits the region of the field is
Want to see more full solutions like this?
Chapter 32 Solutions
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- Look at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill